NAVODAYA VIDYALAYA SAMITI

1st PRE-BOARD EXAMINATION SESSION 2021-22

MATEMATICS (041)

TERM -I

TIME ALLOWED: -90 Minutes CLASS-XII MAXIMUM MARKS-40

GENERAL INSTRUCIONS

1. This question paper contains three sections-A, B, and C. Each section is compulsory.

2. Section – A has 20 MCQs, attempt any 16 out of 20.

3. Section- B has 20 MCQs, attempt any 16 out of 20.

4. Section- C has 10 MCQs, attempt any 8 out of 10

5. There is no negative marking.

SECTION A

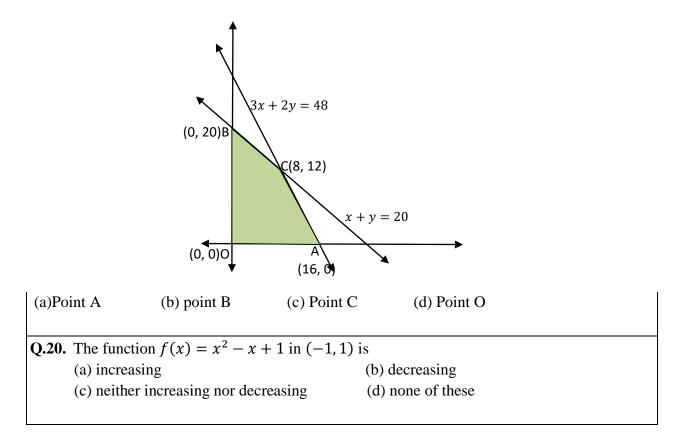
In this section, attempt any 16 questions out of Questions 1-20 Each question is of 1-mark weightage.

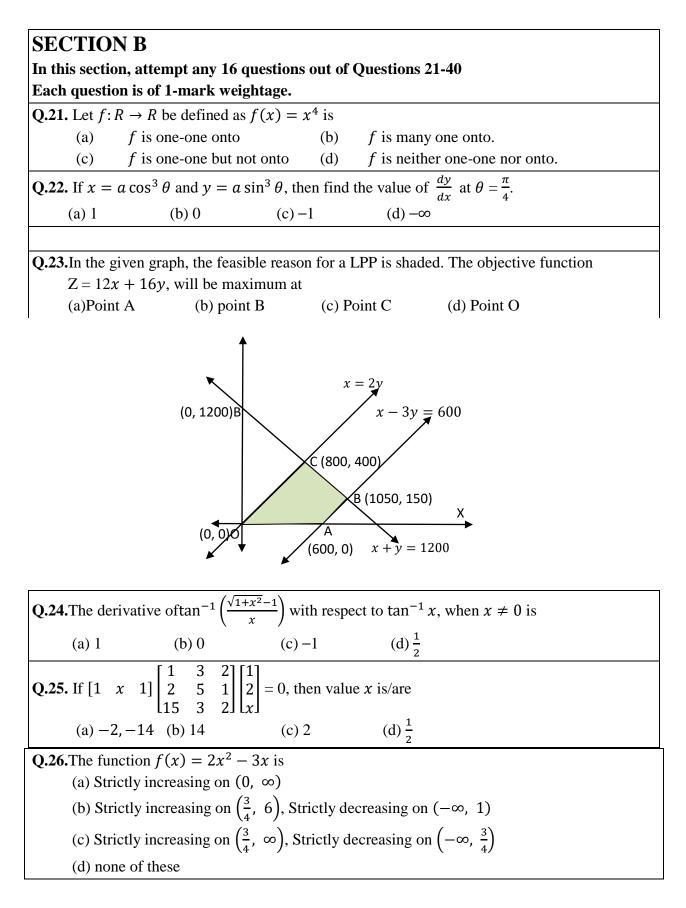
Q.1. If $\theta = \sin^{-1}(\sin 600^{\circ})$ then the value of θ is							
(a) $\frac{\pi}{3}$	(b) —	<u>π</u> 3	(c) 0	(d) $\frac{2\pi}{3}$			
Q.2. The function given by $f(x) = \tan x$ is discontinuous on the set							
(a) $\{x: x = 2\}$	(a) $\{x: x = 2n\pi, n \in Z\}$		(b) $\{x: x = (n-1)\pi, n \in Z\}$				
(c) $\{x: x = n\pi, n \in Z\}$		(d) $\left\{ x \right\}$	(d) $\left\{ x: x = (2n+1)\frac{\pi}{2}, n \in Z \right\}$				
Q.3. If P and Q of symmetric matrix of same order then PQ – QP is a							
(a) Zero matrix		(b) Id	(b) Identity matrix				
(c) Skew Symmetric matrix (d)Symmetric matrix							
Q.4. The number of all possible matrices of order 3x3 with each entry 1 or 2 is							
(a) 27	(b) 18 (d	c) 81 (d) 512				
Q.5. The slope of the normal to the curve $y = 2x^2 + 3 \sin x$ at $x = 0$ is							
(a) 3	(b) $\frac{1}{3}$	(c) –3	$(d) - \frac{1}{3}$	3			

Q.6. Let A be a non-singular square matrix of order 3×3 . Then |adjA| is equal to (c) $|A|^3$ (a) |A| (b) $|A|^2$ (d) 3|A| **Q.7.** Let *R* be the relation in the set $\{1, 2, 3, 4\}$ given by $R = \{(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)\}$ then R is (a) reflexive and symmetric but not transitive. (b) reflexive and transitive but not symmetric. (c) symmetric and transitive but not reflexive. (d) equivalence relation **Q.8.** Which of the given values of x and y make the following pair of matrix equal. $\begin{bmatrix} 3x+7 & 5\\ y+1 & 2-3x \end{bmatrix}, \begin{bmatrix} 0 & y-2\\ 8 & 4 \end{bmatrix}.$ (a) $x = -\frac{1}{3}$, y = 7 (b) Not possible to find. (c) $x = -\frac{2}{3}$, y = 7 (d) $x = -\frac{1}{3}$, $y = -\frac{2}{3}$ **Q.9.** The tangent to the curve $y = e^{2x}$ at the point (0, 1) meets *x*-axis at (b) (0, 2) (c) $\left(-\frac{1}{2}, 0\right)$ (d)(2,0)(a) (0, 1) **Q.10.** $\tan^{-1}\sqrt{3} - \sec^{-1}(-2)$ is equal to (d) $\frac{2\pi}{3}$ a) π (b) $-\frac{\pi}{3}$ (c) $\frac{\pi}{3}$ **Q.11.** If R is a relation from A to B, then (c) $\mathbf{R} \subset \mathbf{A} \times \mathbf{B}$ (a) $\mathbf{R} \subset \mathbf{A}$ (b) $\mathbf{R} \subset \mathbf{B}$ (d) none of these **Q.12.** If $x = e^{y + e^{y + \cdots - x + to \infty}}$, x > 0, then $\frac{dy}{dx}$ is (a) $\frac{1}{x}$ (b) $\frac{x}{1+x}$ (c) $\frac{1-x}{x}$ (d) none of these **Q.13.** If Y, W, and P are matrices of order $3 \times k$, $n \times 3$, $p \times k$ respectively. The restriction on n, k, and p so that PY+WY will be defined are (a) k = 3, p = n(b) k is arbitrary, p = 2(c) p is arbitrary, k = 3(d) k = 2, p = 3**Q.14.** The derivative of sin(log x) w.r.t. x is (a) $\frac{\sin(\log x)}{r}$ (b) $-\frac{\cos(\log x)}{r}$ (c) $\frac{\cos(\log x)}{r}$ (d) none of these

Q.15. Let A b	e a square matrix	x of order 3	\times 3, then	kA is equal	to	
(a) k A	(b) k^2	A (c)	$k^3 A $	(d) 3k A		
0.16 The two	$\sim 2 m m^3 - 2 m^3$	$\frac{1}{12}$ + 2 - 0	and $2x^2y$	$x^{3} - 2$		
Q.16. The two curve $x^3 - 3xy^2 + 2 = 0$ and $3x^2y - y^3 = 2$						
(a) touc	ch each other	(b	o) cut at an	angle $\frac{\pi}{3}$		
(c) cut	at right angle	(0	d) cut at an	angle $\frac{\pi}{6}$		
Q.17. If matrix $A = [a_{ij}]_{2x2}$, where $a_{ij} = 1$, if $i \neq j$ and $a_{ij} = 0$, if $i = j$, then A^2 is equal to						
(a) I	(b) A	(c) 0	(d) None	of these.		
Q.18. If $e^{y}(x)$	(+1) = 1, then	$\frac{d^2y}{dx^2}$ is equal	l to			
(a) $\frac{1}{x+1}$	(b) $\frac{x}{1+x}$	$(c) \frac{1}{(1-x)^2}$		(d) $\left(\frac{dy}{dx}\right)^2$		

Q.19. Based on the given shaded region as the feasible region in the graph, at which point(s) is the objective function Z = 22x + 18y maximum?





0.27		$\sqrt{1+\sin x} + \sqrt{1-\sin x}$ $x \in (0, \pi)$				
	Q.27. Simplest form of $\cot^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right), x \in \left(0, \frac{\pi}{4}\right)$ is					
	(a) $\frac{1}{x+1}$ (b) $\frac{x}{2}$	(c) $\frac{1}{(1-x)^2}$ (d) $\frac{x}{x+1}$				
Q.28.	Q.28. If $A = \begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix}$, then true statement is					
	(a) $ 2A = 4 A $	(b) $ 2A = 2 A $				
	(c) $ 2A = A $	(d) none of these				
Q.29.	If $f(x) = \frac{1}{4x^2 + 2x + 1}$, th	en its maximum value is				
	(a) 0	(b) $\frac{4}{2}$				
	(c) ±5	(d) Maximum value does not exist.				
Q.30.		the set N given by $R = \{(a, b): a = 2b \text{ and } a \ge 3\}$, then				
	(a) $(2, 4) \in R$	(b) $(8, 4) \in R$				
	(c) $(4, 10) \in R$	(d) $(4, 8) \in R$				
	The function defined b $f(x) = x - 1 , x \in R$ (a) $x \in R$ (c) $x = 1$	by R is not differentiable at point(s) (b) $x = 1, -1$ (d) $x \in R - \{1\}$				
Q.32.	If $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$, then (a) 27 A (b) 2	n A^2 is 2 A (c) 3 A (d) I				
Q.33.	A linear programming					
	Maximize $Z = 3x + 2y$					
	subject to constraints: $x + 2y \le 10$, $3x + y \le 15$, $x \ge 0$, $y \ge 0$ In the feasible region, the maximum value of Z is occurs at					
	(a) $x = 2, y = 3$.					
	(b) $x = 3, y = 4$.					
	(c) $x = 4, y = 3.$					
	(d) no points					
0.34.	Q.34. The interval in which the function f given by $f(x) = 2x^3 - 3x^2 - 36x + 7$ is Strictly					
decreasing is						
	(a) (−∞, −2)	(b) (-2,3)				
	(c)(3,∞)	$(d) (-\infty, -2) \cup (3, \infty)$				

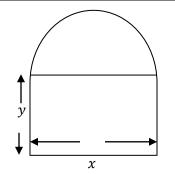
Q.35. If $A = \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}$ is such that $A^2 = I$ (identity matrix) then (a) $1+\alpha^2 + \beta\gamma = 0$ (b) $1-\alpha^2 + \beta\gamma$ (c) $1-\alpha^2 - \beta\gamma = 0$ (d) $1+\alpha^2 - \beta\gamma = 0$ (b) $1 - \alpha^2 + \beta \gamma = 0$ **Q.36.** The value of $sin(2 sin^{-1}(.8))$ is (a) sin 1.6 (b) 1.6 (c) .96 (d) 4.8 **Q.37.** Let $f: R \to R$ be defined by $f(x) = x^2 + 1$. Then, pre-image of 5 is/are (a) −3 (b) -2, 2(c) -1.2(d) none of these **Q.38.** If $A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$ then $A + A^{T} = I$, if the value of α is $(a)\frac{\pi}{6}$ (b) $\frac{\pi}{3}$ (c) π (d) $\frac{3\pi}{2}$ **Q.39.** The values of *a* for which $y = x^2 + ax + 25$ touches the x-axis are (a) 0 (b) +10 (c) 4, -6(d) ± 5 **Q.40.** If matrix $A = [a_{ij}]_{2x2}$, where $a_{ij} = 1$, if $i \neq j$ and $a_{ij} = 0$, if i = j, then A^2 is equal to (a) I (b) A (c) 0(d) None of these. **SECTION C** In this section, attempt any 8 questions. Each question is of 1-marks weightage. **Ouestions 46-50 are based on a Case-Study. Q.41.** For an objective function Z = ax + by, where a, b > 0; the corner points of the feasible region determined by a set of constraints are (60, 0), (120, 0), (60, 30) and (40, 20). The condition on a and b such that the maximum Z occurs at both the points (120, 0) and (60, 30) is (a) a - 2b = 0(b) 2a - 3b = 0(c) 2a - b = 0(d) a - b = 0

Q.42. The line y = x + 1 is a tangent to the curve $y^2 = 4x$ at the point (a) (1, 2) (a) (2, 1) (a) (1, -2) (a) (-1, 2)

6

Q.43. The function given by $f(x) = x^3 - 3x^2 + 3x - 100$ is (a) strictly increasing in R (b) strictly decreasing in R (c) neither increasing nor decreasing in R (d) not define in RQ.44. In a linear programming problem, the constraint on the decision variable x and y are $x + 2y \le 8$, $3x + 2y \le 12$, $x \ge 0$, $y \ge 0$. The feasible region is (a) is not in the first quadrant (b) is bounded in the first quadrant (c) is unbounded in the first quadrant (d) does not exist $\binom{2}{x} = \binom{6}{18}$ $\begin{vmatrix} 2 \\ 6 \end{vmatrix}$ then x is equal to **Q.45.** If $\begin{vmatrix} x \\ 18 \end{vmatrix}$ (b) + 6(d) 0(a) 6 (c) - 6**CASE STUDY**

Dr. Ritam residing in Delhi went to see an apartment of 3 BHK in Dilshad Garden. The window of the house was in the form of a rectangle surmounted by a semicircular opening having a perimeter of the window 10 m. as show in figure.



Based on the above information answer the following:

Q.46. If x and y represent the length and breadth of the rectangular region, then the relation between the variable is

(a) $x + y + \frac{x}{2} = 10$ (b) $x + y + \frac{x}{2} = 10$ (c) $2x + 4y + \pi x = 20$ (d) $x + y + \frac{x}{2} = 10$

Q.47. The area Aof the window is expressed as a function of x is

(a) A =
$$x - \frac{x^2}{2} - \frac{\pi x^2}{8}$$

(b) A = $5x - \frac{3x^2}{2} - \frac{\pi x^2}{8}$
(c) A = $5x + \frac{x^2}{2} - \frac{\pi x^2}{8}$
(d) A = $5x - \frac{x^2}{2} - \frac{\pi x^2}{8}$

Q.48. Dr. Ritam is interested in maximizing the area of the whole window. For this to happen the
value of length x should be(a) $\frac{20}{4+\pi}$ m(b) $\frac{20}{2}$ m(c) $\frac{20}{2+\pi}$ m(d) $\frac{20}{4-\pi}$ mQ.49. For maximum value of A, the breadth yof rectangular part of window is(a) $\frac{10}{4+\pi}$ m(b) $\frac{10}{\pi}$ m(c) $\frac{20}{2+\pi}$ m(d) $\frac{10}{\pi}$ m(d) $\frac{10}{4-\pi}$ m(e) $\frac{20}{2+\pi}$ m(f) $\frac{10}{4-\pi}$ m(g) $\frac{10}{4+\pi^2}$ sq. m(h) $\frac{100}{(4+\pi)^2}$ sq. m(h) $\frac{100}{(4+\pi)^2}$ sq. m(h) $\frac{200+5\pi}{(4+\pi)^2}$ sq. m(h) $\frac{200+5\pi}{(4+\pi)^2}$ sq. m(h) $\frac{200+5\pi}{(4+\pi)^2}$ sq. m