NAVODAYA VIDYALAYA SAMITI

TERM - I Exam 2021 - 2022

Class-XI

MATHEMATICS (Code - 041)

Time Allowed: 90 minutes

Maximum Marks: 40

General Instructions:

- 1. This question paper contains three sections A, B and C. Each part is compulsory.
- 2. Section A has 22 MCOs, attempt any 16 out of 22.
- 3. Section B has 23 MCQs, attempt any 16 out of 23.
- 4. Section C has 10 MCQs, attempt any 8 out of 10.
- 5. There is no negative marking.
- 6. All questions carry equal marks.

Section - A

1. If A, B, C be three sets such that $A \cup B = A \cup C$ and $A \cap B = A \cap C$, then,

(A)
$$B = C$$

(B)
$$A = C$$

$$(C) A = B = C$$

$$(D) A = B$$

(iv) Null set

2. Which one is different from the others:

- (i) Empty set
- (ii) Void Set
- (iii) Zero Set

(A)(i)

(B) (ii)

(C) (iii)

(D) (iv)

3. if $A=\{0,1\}$ then A X A is given by

$$(A) \{ 0,1 \}$$

$$(B) \{(1,0),(0,1)\}$$

$$(C)$$
 { $(0,0)$, $(0,1)$, $(1,0)$, $(1,1)$ }

$$(D) \{(0,0),(1,1)\}$$

If f(x)=3(2x-4), then f(-1) is given by 4.

$$(A) - 6$$

(B)6

(C) 18

(D)-18

The value of θ for which $\frac{3+2i\sin\theta}{3-2i\sin\theta}$ is purely real 5.

a)
$$\theta = \frac{n\pi}{2}$$

a)
$$\theta = \frac{n\pi}{2}$$

b) $\theta = -\frac{\pi}{2}$
c) $\theta = \frac{\pi}{2}$

c)
$$\theta = \frac{\pi}{2}$$

d)
$$\theta = n\pi$$

6. $(1+i)^6 + (1-i)^3$ is equal to

a)
$$-2 + 10i$$

c)
$$-2-5i$$

	b) -2 c) 3 d) 5				
8.	The solution of x^2 . a) $\frac{-1\pm\sqrt{7}i}{4}$ b) $\frac{1\pm\sqrt{7}i}{4}$ c) $\frac{1\pm\sqrt{7}i}{2}$ d) $\frac{-1\pm\sqrt{7}i}{2}$	x + 2 = 0			
9.	The equation of the li	ne which cuts off equal	l intercept from the axes	and passes throu	igh the points (1,-2)
		(b) $2x - y +1 =0$	(c) $x - y - 1$	=0 (0	d) $x + 2y + 1 = 0$
10.	What is the value of k (a) 3	for which the line (k-3 (b) 4	(6) 3)x $-(4-k^2)y + k^2 - 7k + (6)$ 5	6=0 is parallel	to the x-axes (d) 6
11.	What is the value of k $7x + 5y - 4 = 0$. (a) 29/37	(b) -29/37	x + 3y + 4 + k(6x - y + 12) (c) 27/37	2) =0 is perpen (d) -2	
12.	Two lines are perpend (a) 0	dicular if the product of (b) 1	their slopes is (c) -1	(d) None of	fthese
	A parking lot in an IT		shaped with two of its vang the points (1,1) and (2		0) and C (1,12). The
13.	Find the co-ordinate (a) (1,6)	of third vertex A of a tr (b) (2,6)	riangular shaped parking (c) (1,5		(d) (2,5)
14.	Find the equation of t (a) $y = 4x + 8$	the line that passes through (b) $y = 3x-7$	ugh the points B (-2,0) a (c) y	nd C (1,12). = 4x -8	(d) $y = 3x - 7$
15.	Find the equation of (a) $4x + y + 2 = 0$	the line parallel to BC at (b) $4x - y$	and passing through the $-2 = 0$ (c) $7x = 0$	vertex A. -y - 2=0	(d) $7x + y + 2 = 0$
16.	Find the equation of t (a) $x - 2y + 26 = 0$	he line perpendicular to (b) 4x +y -2	BC and passing through	h the vertex A. +4y -26=0	(d) $4x - y + 26 = 0$
17.	The value of $\lim_{x\to 0} \frac{\sin \frac{\sin x}{\sin x}}{\sin x}$	$\frac{n^2 2x}{n^2 4x}$			
	(a) 2		$(b)\frac{1}{2}$		
	(b) -2		(b) $\frac{1}{2}$ (d) $\frac{1}{4}$		
			•		

The real value of 'a' for which $3i^3 - 2ai^2 + (1-a)i + 5$ is real is ------

7.

a) 1

18.	(a) $x+1$	0)= $f'(0) = 1$ then $f(x)$	(b) x-1	(b) x-1			
	(c) $-x+1$		(d) -x-1				
19.	$\lim_{x \to 0} \frac{(x+2)^{\frac{1}{3}} - 2^{\frac{1}{3}}}{x}$ is	equal to	1 -2				
	(a) $\frac{1}{2}$ (3) $\frac{1}{3}$		(b) $\frac{1}{3}(2)^{\frac{3}{3}}$	(b) $\frac{1}{3}(2)^{3}$			
	(a) $\frac{1}{2}$ (3) $\frac{-2}{3}$ (c) $\frac{-2}{3}$ (2) $\frac{1}{3}$		(b) $\frac{1}{3}(2)^{\frac{-2}{3}}$ (d) $\frac{3}{2}(2)^{\frac{-2}{3}}$				
20.	If a finite set S cont	pins n elements, then	the number of all non a	empty proper subsets of	Sic		
20.	(A) 2^n		1) (C) $2^n - 2$		5 15		
21.	. ,	of an A.P., for $r = 1, 2,$		e integers m, n, we have T _r	_n =1/n and		
	(a) 1/m n (b) 1/m	m + 1/n (c) 1	(d) 0				
22.	The first term of a GP	is 1. The sum of the th	ird term and fifth term is	90. The common ratio of	GP is		
	(a) 1 (b) 2	(c) 3 (d) 4					
		<u>Se</u>	ection- B				
23.	If $A = \{x: xismulti$ multiples of:	$pleof 4 $ and $B = \{x$: xismultipleof 6} tl	then then $(A \cap B)$ consist	ts of all		
	(A) 24	(B) 4	(C) 6	(D) 12			
24.	If A x B = $\{ (p, q), (p, r), (m, q), (m, r) \}$ Then A and B are						
	(A) { p, q, m} ar	ıd { q, r }	(B) { p, q,	(B) { p, q, r} and { m, n }			
	(C) { p, m} and { q, r}		(D) { p, q	,} and { m, r }			
25.	The domain of the function $f(x) = \sqrt{9 - x^2}$ is						
	$(A) \{-3,3\}$		$(B) \{-3, 0, 3\}$	(B) {-3, 0, 3}			

26. The value of k, if for complex numbers z_1 and z_2 we have $|1 - \overline{z_1} \ z_2|^2 - |z_1 - z_2|^2 = k(1 - |z_1|^2)(1 - |z_2|^2)$ a) k = 0

(D)R-[-3,3]

b)
$$k = 2$$

(C)[-3, 3]

c)
$$k = 1$$

d)
$$k = -1$$

27. If $|z^2 - 1| = |z|^2 + 1$, then z lies

- a) on imaginary axis
- b) on real axis
- c) on both axes
- d) none of these

28. If $z_1=2-i$, $z_2=-2+i$ then $Re\left(\frac{z_1z_2}{\overline{z_1}}\right)$ is

- a) 1/5
- b) 2/5
- c) 2/5
- d) 2/5

29. If $\left(\frac{1+i}{1-i}\right)^m = 1$ then least positive value of m is

- a) 1
- b) 2
- c) 3
- d) 4

30. If f is a real valued function defined by $f(x) = x^2 + 4x + 3$, then the f''(3) equal to

(a)11

(b)9

(c)10

(d)12

31. Let $\begin{cases} x^2 - 1, 0 < x < 2 \\ 2x + 3, 2 \le x < 3 \end{cases}$ then $\lim_{x \to 2^-} f(x)$ and $\lim_{x \to 2^+} f(x)$ are

(a)3,7

(b)-3,-7

(c)3,-7

(d)-3,7

32. The distance of f(t) in metres moved by a particle travelling in a straight line in t seconds is given by $f(t)=t^2+3t+4$, then the speed of the particle at the end of 2 seconds is equal to

(a)5 m/sec

(b)0.5m/sec

(c)0.7m/sec

(d)7m/sec

33. The mean and variance of 7 observations are 8 and 16 respectively. If 5 of the observations are 2, 4, 10, 12 and 14. The other two observations are.

- (a)
- 6,8
- (b) 3,5
- (c) 7,9
- (d) 5.7

34. Calculate the mean deviation about the mean of the following data:

CLASS	10-20	20-30	30-40	40-50	50-60	60-70	70-80
Fi	2	3	8	14	8	3	2
	(a) 5	(b) 3	(c) 10	(d) 12			

35. Find the mean deviation about the mean for following data:

38, 70, 48, 40, 42,55, 63, 46, 54, 44.

- (a) 5
- (b) 7.8
- (c) 2.97
- (d) 8.4

36.	observation		(c) 3	and 4 is (d) 7	7. Find the	e mean	deviation about	median of these
37.	Assertion (A) is followed by a statement of Reason (R). Pick the correct option as: (a) If both A and R are true and R is the correct explanation of A (b) If both A and R are true but R is not the correct explanation of A. (c) If A is true but R is false (d) If A is false but R is true (e) If both A and R are false							
	Assertion Reason:	positive	numbers, the numbers or subtracting	nen the vari	iance chang	ed accor	ding to 'a'.	a' is a negative or n data affects the
38.	If a, b, c a $(a) b = a$			- c	(c) $b^2 = a +$	- c	(d) $2b^2 = a + c$	
39.	The first t	term in the	e sequence a	n = 2n + 5 is	S			
	(a) 7	(b) 11	(C) -7	(d) 9				
40.	If the first	t term of a	n A.P is 3 ar	nd 7th term	is 39, the c	ommon	difference is	
	(a) 6		(b) 7		(c) 5		(d)-6	
41.	The numb	pers -2/7,x	,-7/2 are in (G.P. Then t	the value of	x is		
	$(a)\pm 2$		(b) ±3	(0	e) ±1	(d	() ±5	
42.	The 12th	term of a	G.P. whose	8th term is	192 and con	mmon ra	atio is 2.	
	(a) 3070	(1)	5) 3062	(c)30°	72	(d) 3	060	
43.	The sum (a) 3557	of AP 2, 5	, 8,up to (b) 3757	50 terms is	s (c) 3775		(d) 3575	
44.	If the sum of the first 2n terms of the A.P. 2, 5, 8, is equal to the sum of the first n terms of the A.P. 57, 59, 61,, then n is equals to: (a) 10 (b) 12 (c) 11 (d) 13							
45.	The GM b	etween 6 a	nd 24 is					
	(a) 10	(b) 8	c) 11	((d) 12			

Section- C

The function $f: R \rightarrow R$ defined by f(x) = [x], $x \in R$ assumes the value of the greatest integer, less than or equal to x, Such a function is called greatest integer function. From the definition of [x], we can say that

$$[x] = -1 \text{ for } -1 \le x < 0$$

$$[x] = 0 \text{ for } 0 \le x < 1$$

$$[x] = 1$$
 for $1 \le x < 2$, and so on

Based on above information give the answers of following questions (Q.N. 31 to 35)

46. What is the image of [4.25]

(A) 4.25

- (B)5
- (C)4
- (D)4.5

47. What is the domain of the function f

- $(A) (0, \infty)$
- (B) set of integers I
- (C)R
- $(D) [0, \infty)$

48. What is the range of function f

(A) R (set of all real numbers)

- (B) I (set of all integers)
- (C) N (set of all natural numbers)
- $(D)(0,\infty)$

49. What is the image of [-13.5]

(A) 13

(B) 14

(C)-13

(D)-14

50. Find the value of [5.2] - [-0.5]

(A)6

- (B)5
- (C)7
- (D)4

CASE STUDY:

Rajashri is standing at the junction A of straight line represented by 2x - 3y + 4 = 0 and 3x + 4y - 5 = 0

$$2x - 3y + 4 = 0$$

6x - 7y + 8 = 0

$$3x + 4y - 5 = 0$$

51. Slope of the line 2x - 3y + 4 = 0 is

(A) 2 (B) 3

 $(C)\frac{2}{3}$ $(D) -\frac{2}{3}$

What is the intercept made by the line 3x + 4y - 5 - 052.

(A) 3

 $(B)\frac{5}{4}$ $(C)\frac{5}{3}$ $(D)\frac{3}{4}$

53. Coordinate of point A is

 $(A)\left(\frac{1}{17}, -\frac{22}{17}\right) \qquad (B)\left(-\frac{1}{17}, \frac{22}{17}\right) \qquad (C)\left(\frac{1}{17}, \frac{22}{17}\right) \qquad (D)\left(-\frac{1}{17}, -\frac{22}{17}\right)$

- 54. Rajashri want to reach the path 6x - 7y + 8 = 0. Then from the point A she must walk along a line which is
 - (A) Perpendicular to the line 6x 7y + 8 = 0
 - (B) parallel to the line 6x 7y + 8 = 0
 - (C) not necessarily perpendicular to the line 6x 7y + 8 = 0
 - (D) not necessarily parallel to the line 6x 7y + 8 = 0
- 55. Then from point A she must walk along a line which is

(A) 102x + 119y = 125

(*B*) 119x + 102y = 125

 $(C)\ 109x + 112y = 125$

(D) 119x + 102y = 215