

Marking Scheme

Mathematics –Basic(241)

Class- X Session- 2021-22

TERM II

Q.N.	HINTS/SOLUTION	Marks
1	$6x^2 - x - 2 = 0$ $\Rightarrow 6x^2 + 3x - 4x - 2 = 0$ $\Rightarrow 3x(2x + 1) - 2(2x + 1) = 0$ $\Rightarrow (3x - 2)(2x + 1) = 0$ $\therefore x = \frac{2}{3}, -\frac{1}{2}$ <p style="text-align: center;">OR</p> <p>Since the roots are real and equal, $\therefore D = b^2 - 4ac = 0$</p> $\Rightarrow k^2 - 4 \times 2 \times 3 = 0 \quad (\because a = 2, b = k, c = 3)$ $\Rightarrow k^2 = 24$ $\Rightarrow k = 2\sqrt{6} \text{ or } -2\sqrt{6}$	1/2 1/2 1 1 1/2 + 1/2
2	<p>Total volume of solid = Volume of cone + volume of hemisphere</p> $\Rightarrow \frac{1}{3} \pi r^2 h + \frac{2}{3} \pi r^3 \quad \{r=1 \text{ cm}, h=1 \text{ cm}\}$ $\Rightarrow \pi \text{ cm}^3$	1/2 1/2 1
3	<p>Modal Class 3-5</p> <p>Using formula and putting the values</p> <p>Finding answer mode = 3.286</p>	1/2 1/2 1
4	<p>Using formula and finding the value of a & d</p> $a+2d=5, a+6d=9$ $a = 3, d=1$ <p>required A.P. is 3,4,5,6,7,.....</p>	1/2 1/2 1
5	<p>Finding CF</p> <p>Using formula and putting the values</p> <p>Finding answer median = 28.5</p>	1/2 1/2 1
6	<p>Correct figure</p> <p>To prove congruency of two triangle in that figure</p> <p>Length of tangent are equal (CPCT)</p> <p>Or</p> <p>\because Tangent segments drawn from an external point to a circle are equal</p> $\therefore BP=BQ=CR=CQ=DR=DS=AP=AS$ $\Rightarrow BP+CR+DR+AP = BQ+CQ+DS+AS$	1/2 1/2 1 1/2 1/2

	$\Rightarrow AB+DC = BC+AD$ $\therefore AD = 10-7 = 3 \text{ cm}$	1
7	Using the formula of sum of A.P. Finding equation $3n^2 - 51n + 156 = 0$ $n=4 \text{ or } 13$	1 1 1
8	Let, AB be the tree broken at C, Also let $AC = x$ In ΔCAD , $\sin 30^\circ = \frac{AC}{DC}$ $\Rightarrow \frac{1}{2} = \frac{x}{8}$ $\Rightarrow x = 4 \text{ m}$ \Rightarrow the length of the tree is $= 8+4 = 12 \text{ m}$	1 1/2 1/2 1 1(correct Fig.)
	OR	
	Let AB and CD be two poles of height h meters also let P be a point between them on the road which is x meters away from foot of first pole AB, $PD = (80-x)$ meters. In ΔABP , $\tan 60^\circ = \frac{h}{x} \Rightarrow h = x\sqrt{3}$(1) In ΔCDP , $\tan 30^\circ = \frac{h}{80-x} \Rightarrow h = \frac{80-x}{\sqrt{3}}$(2) $x\sqrt{3} = \frac{80-x}{\sqrt{3}}$ $[\because LHS(1) = LHS(2), \text{ so equating RHS}]$ $\Rightarrow 3x = 80 - x \Rightarrow 4x = 80 \Rightarrow x = 20 \text{ m}$ So, $80 - x = 80 - 20 = 60 \text{ m}$ Hence the point is 20m from one pole and 60 meters from the other pole.	1 1/2 1/2 1 1(correct Fig.)
9	AB is chord of larger circle and M be the mid point of AB as OM is radius of smaller circle and perpendicular to chord AB. Using Pythagoras property $MB = 4 \text{ cm}$. $AB = 8 \text{ cm}$.	1 1 1
10	Let larger number = x , smaller number = y and $y^2 = 8x$ Finding $x^2 - 8x - 180 = 0$ $x = 18, -10$ Hence numbers are 18 and 12 or 18 and -12	1 1 1
11	Correct figure of circle and point Constructing the tangent Measuring the length of tangents = 8 cm each Or Draw a circle of radius 6 cm Draw OA and Construct $\angle AOB = 120^\circ$ Draw $\angle OAP = \angle OBP = 90^\circ$ PA and PB are required tangents	2 1 1 1 1 1 1 1

	Join OP and apply $\tan \angle APO = \tan 30^\circ = \frac{6}{PA}$ \Rightarrow Length of tangent = $6\sqrt{3}$ cm	1
12	Using formula of mean finding class mark putting the value finding the answer Mean = 211	1 1 1 1
13	(i) the height and base distance are equal and $\tan 45^\circ = 1$ Angle of elevation = 45° . (ii) Height / Base distance = $\tan 60^\circ$ base distance $14\sqrt{3}$ m	1 1 1 1
14	(i) Height of hemispherical dome = radius of hemispherical Using the formula of volume of hemisphere Correct answer = 19404 m^3 (ii) Using the formula of curved surface area of hemisphere Correct answer = 1232 m^2	1 1 1 1