


Marking Scheme
Pre Board Exam 2021-22
Class- X
TERM-II
Subject- Mathematics

Q.NO.	SECTION A	MARKS
1	<p>Let the first term is a and common difference is d</p> $S_n = 3n^2 + 5n$ $S_1 = 3 + 5 = 8 \quad a_1 = S_1 = 8$ $S_2 = 3 \times 4 + 5 \times 2 = 22 \quad a_2 = S_2 - S_1 = 22 - 8 = 14$ $S_3 = 3 \times 9 + 5 \times 3 = 42 \quad a_3 = S_3 - S_2 = 42 - 22 = 20$ <p>Thus AP is 8,14,20 -----</p> <p>And $a_{15} = a + 14d = 8 + 14 \times 6 = 8 + 84 = 92$</p> <p style="text-align: center;">OR</p> $5a_5 = 8a_8$ $5(a + 4d) = 8(a + 7d)$ $5a + 20d = 5a + 56d$ $3a + 36d = 0 \Rightarrow a + 12d = 0 \Rightarrow a_{13} = 0$	1 $\frac{1}{2}$ 1 $\frac{1}{2}$ $\frac{1}{2}$ 1
2	$kx(x - 2\sqrt{5}) + 10 = 0$ $kx^2 - 2\sqrt{5}kx + 10 = 0$ $a = k, b = -2\sqrt{5}k, c = 10$ <p>Roots of quadratic equation are equal if $D = 0$</p> $b^2 - 4ac = 0$ $(-2\sqrt{5}k)^2 - 4 \times k \times 10 = 0$ $20k^2 - 40k = 0$ $20k(k - 2) = 0$ $K = 0, k = 2, \text{ rejecting } k = 0 \text{ then } k = 2$	$\frac{1}{2}$ $\frac{1}{2}$ 1
3	<p>Given: PQ is a tangent. AB is a diameter, $\angle CAB = 30^\circ$</p> <p>To find: $\angle PCA = ?$</p> <p>In $\triangle AOC$,</p> <p>$\angle CAB = \angle OCA$ (Angles opposite to equal sides are equal)</p> <p>So, $\angle CAB = 30^\circ = \angle OCA$</p> <p>Since $OC \perp PQ$ (Tangent is perpendicular to the radius at point of contact)</p> <p>$\angle PCO = 90^\circ$</p> <p>$\angle OCA + \angle PCA = 90^\circ$</p> <p>$30^\circ + \angle PCA = 90^\circ$</p> <p>$\angle PCA = 90^\circ - 30^\circ$ therefore $\angle PCA = 60^\circ$</p>	1
4	<p>Radius of cylinder = 2.5mm , length of capsule = 14mm</p> <p>Then length of cylinder = $14 - 5 = 9$mm , radius of hemisphere = 2.5 mm</p>	$\frac{1}{2}$ $\frac{1}{2}$

	$ \begin{aligned} \text{TSA of capsule} &= \text{S.A. of cylindrical part} + 2 \times \text{C.S.A. of hemisphere} \\ &= 2\pi r h + 2 \times 2\pi r^2 \\ &= 2\pi r (h + 2r) \\ &= 2 \times 22/7 \times 2.5 \times (9 + 2 \times 2.5) \\ &= 5 \times 22/7 \times 14 \text{ mm}^2 \\ &= 220 \text{ mm}^2 \end{aligned} $	1																												
5	<p>Modal class = 30–40</p> <p>So, $f_0=x, f_1=16, f_2=12, l=30$ and $h=10$</p> $ \begin{aligned} \Rightarrow \text{Mode} &= l + (f_1 - f_0) / (2f_1 - f_0 - f_2) \times h \\ \Rightarrow 36 &= 30 + (2 \times 16 - x) / (2 \times 16 - x - 12) \times 10 \\ \Rightarrow 6 &= (16 - x) / (20 - x) \times 10 \\ \Rightarrow 120 - 6x &= 160 - 10x \\ \Rightarrow 4x &= 40 \\ \therefore x &= 10 \end{aligned} $	$\frac{1}{2}$ $\frac{1}{2}$ 1																												
6	<p>Let the length of the side of the chess board be x cm. Then,</p> <p>Area of 64 squares = $(x-4)^2$</p> <p>Therefore,</p> $ \begin{aligned} (x-4)^2 &= 64 \times 6.25 \\ x^2 - 8x + 16 &= 400 \\ x^2 - 8x - 384 &= 0 \\ x^2 - 24x + 16x - 384 &= 0 \\ (x-24)(x+16) &= 0 \\ x &= 24 \text{ cm} \end{aligned} $ <p style="text-align: center;">OR</p> $ \begin{aligned} 4x^2 - 4ax + a^2 - b^2 &= 0 \\ [(2x)^2 - 4ax + a^2] - b^2 &= 0 \\ (2x - a)^2 - b^2 &= 0 \\ [(2x - a) + b] [(2x - a) - b] &= 0 \\ [2x - a + b] &= 0, [(2x - a - b)] = 0 \\ 2x - a - b &, 2x = a + b \\ x = a - b / 2 &, x = a + b / 2 \end{aligned} $	$\frac{1}{2}$ $\frac{1}{2}$ 1 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$																												
	SECTION B																													
7	<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th>No of seats (C.I)</th> <th>No. of flights (f_i)</th> <th>Class mark(x_i)</th> <th>$\sum f_i x_i$</th> </tr> </thead> <tbody> <tr> <td>100-104</td> <td>15</td> <td>102</td> <td>1530</td> </tr> <tr> <td>104-108</td> <td>20</td> <td>106</td> <td>2120</td> </tr> <tr> <td>108-112</td> <td>22</td> <td>110</td> <td>2420</td> </tr> <tr> <td>112-116</td> <td>18</td> <td>114</td> <td>2052</td> </tr> <tr> <td>116-120</td> <td>15</td> <td>118</td> <td>1770</td> </tr> <tr> <td></td> <td>$\sum f_i = 90$</td> <td></td> <td>$\sum f_i x_i = 9892$</td> </tr> </tbody> </table>	No of seats (C.I)	No. of flights (f _i)	Class mark(x _i)	$\sum f_i x_i$	100-104	15	102	1530	104-108	20	106	2120	108-112	22	110	2420	112-116	18	114	2052	116-120	15	118	1770		$\sum f_i = 90$		$\sum f_i x_i = 9892$	1
No of seats (C.I)	No. of flights (f _i)	Class mark(x _i)	$\sum f_i x_i$																											
100-104	15	102	1530																											
104-108	20	106	2120																											
108-112	22	110	2420																											
112-116	18	114	2052																											
116-120	15	118	1770																											
	$\sum f_i = 90$		$\sum f_i x_i = 9892$																											
	$X = \sum f_i x_i / \sum f_i$	1/2																												
	$= 9892 / 90$	1/2																												
	$= 109.91$ Therefore number of seats = 109.	1																												

8	Using proper scale construction Steps of construction	2 1
9	$N = 50 \therefore f = 50$ $a = 12$, $b = 13$ $c = 35$ $d = 8$ $e = 5$	Each correct answer $\frac{1}{2}$ marks
10	Correct diagram	
	Here AB is TV tower of height = y meter.	1
	Let, $BC = x$ meter	
	Point C and D are points of observations to the top of the TV tower making an angles of elevation 30° and 60° respectively.	
	\therefore In $\triangle ABC$, $\tan 60^\circ = AB/BC$	$\frac{1}{2}$
	$\sqrt{3} = y/x \therefore x = y/\sqrt{3}$ -----1	
	Again in $\triangle ABD$, $\tan 30^\circ = AB/BD$	
	$1/\sqrt{3} = y/x+20$	
	$x+20 = \sqrt{3} y \therefore x = \sqrt{3}y - 20$ -----2	
	By 1 and 2, $y/\sqrt{3} = \sqrt{3}y - 20$	$\frac{1}{2}$
	$y = 3y - 20\sqrt{3}$	
	$y = 10\sqrt{3}$ meter	1
	OR	
	Correct diagram	
	Here A and B are the positions of aeroplane	
	and	
	D are points of observations such that	
	$\angle CDB = 45^\circ$ & $\angle CDA = 60^\circ$	
	$AC = 5000\text{m}$ & $AB = x$ meter	1

	$\therefore \text{In } \Delta ABC, \tan 45 = BC/BD$ $1 = BC/y \quad BC = y \quad \dots \quad 1$ $AC = BC + AB = 5000 \quad x + y = 5000 \quad \dots \quad 2$ <p>Again in ΔACD, $\tan 60 = AC/CD$</p> $\sqrt{3} = 5000/y$ $y = 5000/\sqrt{3} \quad \dots \quad 3$ <p>By substituting the value of y in equation(2), we get</p> $x = 5000 - 5000/\sqrt{3}$ $x = 5000(1 - 1/\sqrt{3}) \text{ or } 2113.25 \text{ meter}$	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
	Section C	
11	<p>Let $\angle PTQ = \theta$</p> <p>$\triangle TPQ$ is an isosceles triangle</p> $\angle TPQ = \angle TQP = 1/2(180 - \theta) = 90^0 - \theta/2$ $\angle OPT = 90^0$ $\angle OPQ = \angle OPT - \angle TPQ$ $= 90^0 - (90^0 - \theta/2)$ $= \theta/2$ $\angle OPQ = 1/2 \angle PTQ$ $2\angle OPQ = \angle PTQ$	1 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ 1
12	<p>The well is in the form of cylinder having radius $3/2$ meter and height 14 meter.</p> <p>The width of the circular ring (Embankment) is 4 meter</p> $R = 4 + 3/2 = 11/2 \text{ meter and } r = 3/2 \text{ meter and } h = 14 \text{ meter}$ <p>Volume of the earth taken out from well = volume of embankment</p> $\pi R^2 H = \pi(R^2 - r^2) H$ $(3/2)^2 \times 14 = [(11/2)^2 - (3/2)^2] \times h$ <p>Therefore $h = 9/8 \text{ meter}$</p> <p>OR</p> <p>Let N be the number of ice cream to be filled.</p> <p>Vol. of ice cream in cylindrical container = $N \times$ Vol. of ice cream cones</p> $\pi R^2 H = N \times \{1/3\pi r^2 h + 2/3\pi r^3\}$ $\pi R^2 H = N \times 1/3\pi r^2 (h + 2r)$ $(6)^2 \times 15 = N \times 1/3 (3)^2 \times (12 + 2 \times 3)$ $\therefore N = 10$	1 1 1 1 1 1 1 1 1 1 1 1
13(i)	<p>Case Study 1</p> <p>(i) $\sin(\alpha + \beta) = 1 \therefore (\alpha + \beta) = 90^0 \quad \dots \quad 1$</p> <p>$\cos(\beta - \alpha) = \sqrt{3}/2 \therefore (\beta - \alpha) = 30^0 \quad \dots \quad 2$</p> <p>From (1) and (2), we get $\beta = 60^0$ & $\alpha = 30^0$</p>	$\frac{1}{2}$ $\frac{1}{2}$ 1
13(ii)	<p>(ii) Let $RB = x$ met & $QR = y$ met</p> $\tan 30 = 28.5/x+y$ $1/\sqrt{3} = 28.5/x+y \quad x = 28.5\sqrt{3} - y \quad \dots \quad 1$	$\frac{1}{2}$

