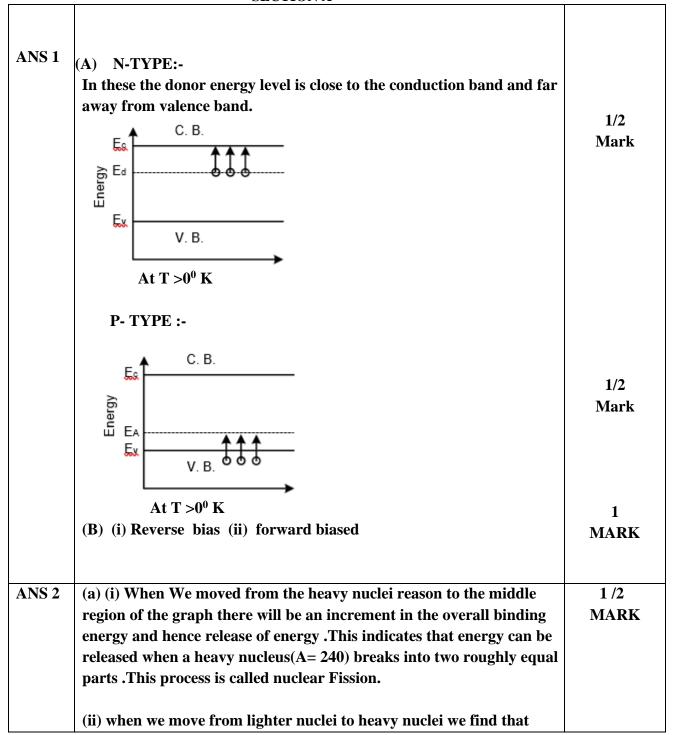
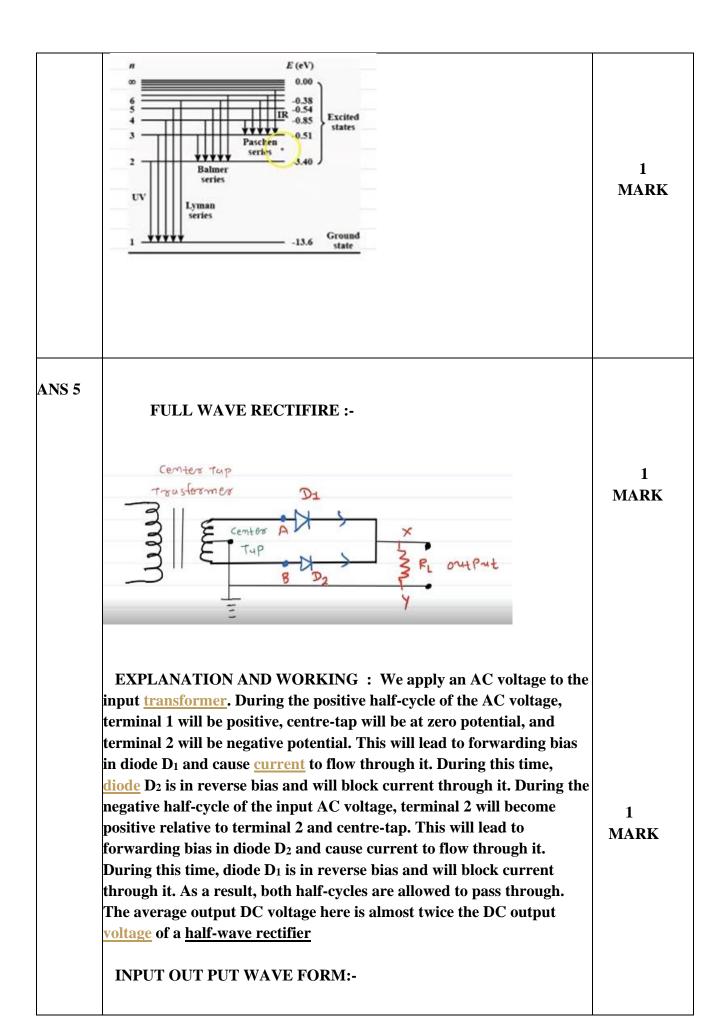
JAWAHAR NAVODAY VIDYALAYA SAMITI

PRE-BOARD EXAMINATION 2021-2022

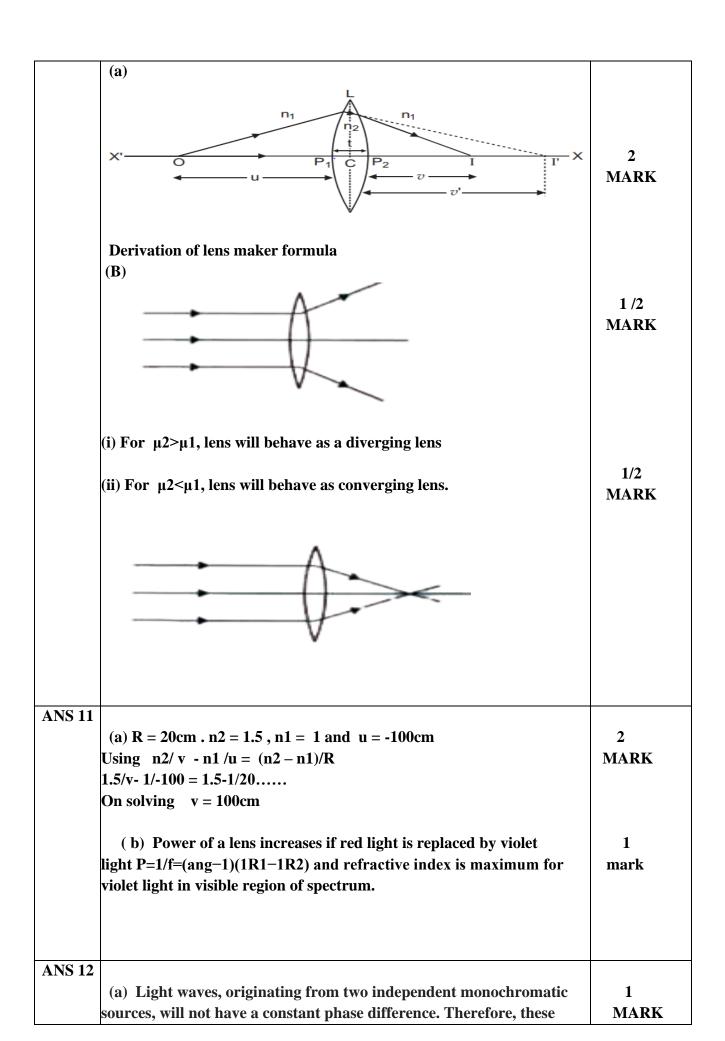

PHYSICS (042)

CLASS - XII

MARKING SCHEME


MM:35 TIME: 2 Hours

SECTION A


there is an increment in the overall binding energy and hence release	
of energy .This indicates that energy can be released when two or	1/2
more lighter nuclei fuse together to form a heavy nucleus. This	Mark
process is called nuclear Fusion.	
(B) the given nuclear reaction,	
Mass of reactants = $m(.1H2)+m(.1H3)m(.1H2)+m(.1H3)$	
=2.0141202+3.016049=2.0141202+3.016049	
=5.030151u=5.030151u	1
Mass of products = $m(.2H4)+m(.0n1)m(.2H4)+m(.0n1)$	Mark
=4.002603+1.008665=4.002603+1.008665	
=5.011268u=5.011268u	
Mass defect, Δm=5.030151u-5.011268uΔm=5.030151u-5.011268u	
=0.018883u=0.018883u	
Energy released =0.018883×931MeV=0.018883×931MeV	
=17.58MeV	
OR	
(i) From photoelectric equation, we have	
$eV_0=hv-\phi_0$ or $V_0=hv/e-\phi_0/e$	1
It is an equation of straight line with slope h/e (=constant). It means	MARK
the slope metals (V ₀ -v) V ₀ -v graph	
(=h/e) is same for both metals M1andM2M1andM2.	
(ii) Also, K max=hv-hv ₀ K max=hv-hv ₀ . For the given frequency of	
incident light, the smaller is the value of v ₀ , the larger is the value of	1
K max and vice versa. Since material M1 has lower value of threshold	MARK
frequency v_0 , so metal M1 will emit photoelectrons of greater K.E.	

ANS 3	(a) Photo diode is fabricated with a transparent window to allow light to fall on the diode. (b) (i) When a reverse biased photo diode is illuminated with the light of energy greater than the forbidden energy gap (Eg), the electron-hole pairs are generated in, or near, the depletion region. Due to junction field, electrons are collected on the n-side and holes on p-side, giving rise to a potential difference.	1/ 2 Mark 1 MARK
	Reverse bias . $I_1 \longrightarrow V \text{ (volts)}$ $I_2 \nearrow I_1 \longrightarrow \mu A$	1/2 MARK
	SECTION B	
ANS 4	According Bohr's postulates, in a hydrogen atom, a single electron revolves around a nucleus of charge +e. Then the centripetal force is provided by Coulomb force of gravitational attraction. So, $mv^2/r = ke^2/r^2$ $mv^2 = ke^2/r^2$ $mv^2 = ke^2/r^2$ $mv^2 = ke^2/r^2$ $mv = radi, v = velocity of electronus of electron orbit Again mv = nh/2\pi V = nh/2 \pi mr$	1/2 MARK
	Substituting v in (1) we get, $M(V= nh/2 \pi mr)^2 = ke^2/r$ $n^2 h^2 /4 \pi^2 mre^2 = r$ (2) using eq. (2) we get $E_k = k e^2 4 \pi^2 me^2 k / 2n^2 h^2$ $E_k = 2 \pi^2 k^2 m e^4/n^2 h^2$ (ii) potential energy	1/2 MARK
	$\begin{split} E_p &= -k(e)*(e)/r \\ E_p &= -ke^2/r \\ E_p &= -k\ e^{2*}\ 4\ \pi^2\ k\ m\ e^2/n^2\ h^2 \\ E_p &= -4\ \pi^2\ k^2\ m\ e^4/n^2\ h^2 \\ Total\ energy\ of\ the\ n^{th}\ orbit \\ E &= E_p + E_k = -13.6/\ n^2\ eV \\ Or\ E &= -RCh/n^2\ where\ R = me^4/8 {\ensuremath{\in}_0}\ ^2\ ch^3\ = Rydberg\ constant \\ For\ hydrogen\ atom\ Z = 1 \end{split}$	1 MARK

	Output waveform at B (ii) (iii)	1 MARK
ANS 6	Energy difference = Energy of emitted photon	
	=E2-E1	
	=-1.51-(-3.4)=1.89eV=-1.51-(-3.4)=1.89Ev	3 MADIZ
	=1.89×1.6×10-19J=1.89×1.6×10-19J	MARK
	λ=hc/E2-E1	
	$=6.6\times10^{-34}\times3\times10^{8} / 1.89\times1.6\times10^{-19} = 19.8 / (3.024)\times10^{-7}$	
	=6.548×10-7m=6548Å	
	This wavelength belongs to Balmer series of hydrogen spectrum.	
ANS 7	(1) No effect. This is because the intensity of radiation incident on a photo-	1/2
	sensitive plate is independent on stopping potential.	MARK
	(2) The photon of blue light has higher energy as compared to red light; so	1/2
	blue light emits electrons of greater kinetic energy than that of red light.	MARK
	(3) Given , for metal A, WA=2eV	
	Metal B, WB=4eV	1
	Since WA <wb λ0a="">λ0B</wb>	1 MARK
	So, threshold wavelength for metal B will be lower.	WAKK
	bo, an eshold wavelength for metal b will be lower.	
	(4) K.E of a particle, $K = 1/2 \text{ m v2} = 1/2\text{m}^* \text{ (mv)}2$	
	$\mathbf{K} = \mathbf{P2} / \mathbf{m}$	
	$P = \sqrt{2mk}$	1
	De- Broglie wave length $\lambda = h/p$	1 MARK
	For the particle possessing same K.E. $\lambda \alpha 1 / \sqrt{m}$	WIANN
	Me << Mp so proton has smaller de-Broglie wavelength.	

ANS 8	
(a) (i) I minimum at 30^{0} satisfies the condition, $d \sin \theta = \lambda$, $d = 1300$ nm	
(ii) I maxima at 30° satisfies the condition,	2 MARK
$d \sin \theta = 3\lambda/2$ $d = 3* \lambda/2 \sin \theta$, $d = 1950*10^{-9} \text{ nm}$	WAKK
(b) Angular width = 2λ/a Intensity α Area	
(i) intensity increases and angular width decreases (ii) No effect on the Angular width intensity increases	1
	MARK
ANS 9 (a)	
Objective f _o Eyepiece He fe A	1.5 MARK
It is the ratio of the angle subtended at the eye, by the final image, to the angle which the object subtends at the lens, $m = \beta/\alpha$ (b) For final image at infinity, $M\infty = f0/fe$ and $L\infty = f0+fe$	
∴5=f0/fe(i) and 36=f0+fe36(ii) Solving these two equations, we have f0=30cm and fe=6cm	1 MARK
(c) The aperture is preferred to be large so that the telescope can collect as much as light coming from the distant object as possible	
concet as much as right coming from the distant object as possible	1/2 MARK
OR	

	sources will not be coherent and, therefore, would not produce a	
	sustained interference pattern.	
	(b) Given $\lambda_1 = 630$ nm, $\beta_1 = 7.2$ mm, $\beta_2 = 8.1$ mm, $\lambda_2 = ?$	
	We know that $\beta = D\lambda/d$, for the same value of D and d we have $\beta \propto \lambda$,	
	Therefore, we have	1
	$\beta_1/\beta_2 = \lambda_1/\lambda_2$, $\lambda_2 = \beta_2 \lambda_1/\beta_1$ On solving	MARK
	$\lambda_2 = 708.75 \text{ nm}$	
	(c) $I_{\text{max}} / I_{\text{min}} = (a+1/a-1)^2 = (25/9)^2$	1
	On solving $a = 4$	MARK
	Therefore $I_1 / I_2 = (a_1 / a_2)^2 = (4/1)^2 = 16:1$	
	OR	
	(a) In the order of increasing frequency, the waves are	1
	(30) === 3== 3= 3== 3== 3== 3== 3= 3== 3= 3=	1
	Radio wave < Microwave < Infrared < Ultraviolet < γ-rays.	MARK
		MARK 1
	Radio wave < Microwave < Infrared < Ultraviolet < γ-rays. (b) (a)) X-rays (b) Microwaves (c) Infrared rays (d) visible light	MARK
	Radio wave < Microwave < Infrared < Ultraviolet < γ -rays. (b) (a)) X-rays (b) Microwaves (c) Infrared rays (d) visible light (c) (i) The wavelength is given by $\lambda = c/v = 3*10^8 / 2*10^{10} =$	MARK 1 MARK
	Radio wave < Microwave < Infrared < Ultraviolet < γ-rays. (b) (a)) X-rays (b) Microwaves (c) Infrared rays (d) visible light	MARK 1
	Radio wave < Microwave < Infrared < Ultraviolet < γ -rays. (b) (a)) X-rays (b) Microwaves (c) Infrared rays (d) visible light (c) (i) The wavelength is given by $\lambda = c/v = 3*10^8 / 2*10^{10} = 1.5*10^{-2}$ m	MARK 1 MARK 1
ANS 12	Radio wave < Microwave < Infrared < Ultraviolet < γ -rays. (b) (a)) X-rays (b) Microwaves (c) Infrared rays (d) visible light (c) (i) The wavelength is given by $\lambda = c/v = 3*10^8 / 2*10^{10} = 1.5*10^{-2}$ m (ii) $B_0 = E_0 / c = 1.6*10^{-7}$ T	MARK 1 MARK 1
ANS 12	Radio wave < Microwave < Infrared < Ultraviolet < γ -rays. (b) (a)) X-rays (b) Microwaves (c) Infrared rays (d) visible light (c) (i) The wavelength is given by $\lambda = c/v = 3*10^8 / 2*10^{10} = 1.5*10^{-2}$ m (ii) $B_0 = E_0 / c = 1.6*10^{-7}$ T SECTION C	MARK 1 MARK 1 MARK
ANS 12	Radio wave < Microwave < Infrared < Ultraviolet < γ -rays. (b) (a)) X-rays (b) Microwaves (c) Infrared rays (d) visible light (c) (i) The wavelength is given by $\lambda = c/v = 3*10^8 / 2*10^{10} = 1.5*10^{-2}$ m (ii) $B_0 = E_0 / c = 1.6*10^{-7}$ T SECTION C 1. (b) Its critical angle with reference to air is too small.	MARK 1 MARK 1 MARK
ANS 12	Radio wave < Microwave < Infrared < Ultraviolet < γ -rays. (b) (a)) X-rays (b) Microwaves (c) Infrared rays (d) visible light (c) (i) The wavelength is given by $\lambda = c/v = 3*10^8 / 2*10^{10} = 1.5*10^{-2} \text{ m}$ (ii) $B_0 = E_0 / c = 1.6*10^{-7} \text{ T}$ SECTION C 1. (b) Its critical angle with reference to air is too small. 2. (a) 2.42 ($n = \sin i_c$)	MARK 1 MARK 1 MARK 5 MARK