QUESTION PAPER (2025 - 26)

Class XI-CHEMISTRY THEORY (043)

Max. Marks:70 Time: 3 hours

General Instructions:

Read the following instructions carefully.

- There are 33 questions in this question paper with internal choice.
- SECTION A consists of 16 multiple -choice questions carrying 1 mark each.
- SECTION B consists of 5 short answer questions carrying 2 marks each.
- SECTION C consists of 7 short answer questions carrying 3 marks each.
- SECTION D consists of 2 case based questions carrying 4 marks each.
- SECTION E consists of 3 long answer questions carrying 5 marks each.
- All questions are compulsory.
- Use of log tables and calculators is not allowed.

Section A $(1 \times 16 = 16 \text{ Marks})$

- Q1. The number of significant figures in 0.05060 is: (a) 3 (b) 4 (c) 5 (d) 6
- Q2. Which law is the basis of stoichiometry? (a) Law of conservation of mass (b) Law of definite proportion (c) Avogadro's law (d) Law of multiple proportions
- Q3. The maximum number of electrons in n = 3 shell is: (a) 9 (b) 18 (c) 32 (d) 8
- Q4. Who discovered the neutron? (a) Thomson (b) Rutherford (c) Chadwick (d) Goldstein
- Q5. The modern periodic law is based on: (a) Atomic number (b) Atomic mass (c) Neutron number (d) Mass number
- Q6. The most electronegative element is: (a) O (b) Cl (c) F (d) N
- Q7. Hybridisation of Be in $BeCl_2$ is: (a) sp (b) sp^2 (c) sp^3 (d) sp^3 d
- Q8. Bond angle in NH₃ is approximately: (a) 90° (b) 107° (c) 120° (d) 180°
- Q9. A state function among the following is: (a) Work (b) Heat (c) Internal energy (d) Path
- Q10. SI unit of enthalpy is: (a) Joule (b) Calorie (c) erg (d) eV
- Q11. Mole fraction of solute in a 1 M solution is always: (a) > 1 (b) < 1 (c) = 1 (d) unpredictable

- Q12. The azimuthal quantum number determines: (a) Size of orbital (b) Shape of orbital (c) Orientation of orbital (d) Spin
- Q13. Which of the following has the smallest atomic radius? (a) Li (b) Na (c) K (d) Rb
- Q14. Which molecule shows hydrogen bonding? (a) HCl (b) CH₄ (c) NH₃ (d) CO₂
- Q15. In an isothermal process, ΔU is: (a) Zero (b) Positive (c) Negative (d) Infinite
- Q16. The compressibility factor (Z) of an ideal gas is: (a) < 1 (b) > 1 (c) = 1 (d) 0

Section B $(2 \times 5 = 10 \text{ Marks})$

- Q17. Define the term mole. How many moles are present in 9 g of water?
- Q18. State Hund's rule of maximum multiplicity. Illustrate with the configuration of nitrogen atom.
- Q19. Write two differences between Mendeleev's periodic law and Modern periodic law.
- Q20. Predict the geometry of SO₂ molecule using VSEPR theory.
- Q21. Define internal energy. How is it related to heat and work?

Section C $(3 \times 7 = 21 \text{ Marks})$

- Q22. A sample of NaOH weighing 4 g is dissolved in water to make 250 mL solution. Calculate its molarity and molality.
- Q23. Write the electronic configuration of: (a) Cr^{3+} (Z = 24) (b) Cu^{2+} (Z = 29). Explain the reason for anomalous configuration of Cr and Cu.
- Q24. Explain the variation of ionisation enthalpy: (a) Across a period (b) Down a group
- Q25. Draw Lewis structure of ClF₃. Predict its shape and bond angle using VSEPR theory.
- Q26. Derive the relation $\Delta H = \Delta U + \Delta nRT$ for an ideal gas.
- Q27. Define enthalpy of formation. Using Hess's law, calculate ΔHf of methane given: ...
- Q28. State Heisenberg's Uncertainty Principle. Calculate the uncertainty in velocity of an electron if its position is located within 1×10^{-10} m. (h = 6.626×10^{-34} J·s, mass of electron = 9.1×10^{-31} kg)

Section D (Case-Based, $2 \times 4 = 8$ Marks)

Q29. Case I – Thermodynamics: During combustion of glucose, $\Delta H = -2800 \text{ kJ/mol.}$ (a) Is the process exothermic or endothermic? (b) Write the balanced chemical equation. (c) Which law is applied in calculating ΔH of reactions? (d) Why is enthalpy a state function?

Q30. Case II – Classification: Successive ionisation enthalpies of an element are given (in kJ/mol): $IE_1 = 738$, $IE_2 = 1450$, $IE_3 = 7730$, $IE_4 = 10500$. (a) Identify the group of element. (b) Justify your answer. (c) Name the element. (d) Write its electronic configuration.

Section E ($5 \times 3 = 15$ Marks)

- Q31. (a) State the postulates of Bohr's model of hydrogen atom. (b) Derive the expression for energy of electron in nth orbit.
- Q32. (a) Explain $\rm sp^3$ hybridisation in methane. (b) Compare structures of BeCl₂, BCl₃, and NH₃ on the basis of VSEPR theory.
- Q33. (a) Explain the first law of thermodynamics with an example. (b) Calculate work done when a gas expands from 5 L to 10 L against constant pressure of 1 atm. (1 L·atm = 101.3 J)