

NAVODAYA VIDYALAYA SAMITI**नवोदय विद्यालय समिति****TERM-I EXAMINATION -2025-26****टर्म-1 परीक्षा -2025-26****CLASS: XII SUBJECT: PHYSICS (042)****कक्षा: XII विषय: भौतिकी (042)**Time -3 HrsMM-70**General Instructions:**

- (i) This question paper contains 33 questions. All questions are compulsory.
- (ii) This question paper is divided into five sections Sections A, B, C, D and E.
- (iii) In Section A Questions no. 1 to 16 are Multiple Choice type questions. Each question carries 1 mark.
- (iv) In Section B Questions no. 17 to 21 are Very Short Answer type questions. Each question carries 2 marks.
- (v) In Section C Questions no. 22 to 28 are Short Answer type questions. Each question carries 3 marks.
- (vi) In Section D Questions no. 29 and 30 are case study based questions. Each question carries 4 marks.
- (vii) In Section E Questions no. 31 to 33 are Long Answer type questions. Each question carries 5 marks.
- (viii) There is no overall choice given in the question paper. However, an internal choice has been provided in few questions in the Sections except Section A.

Use of calculators is not allowed. You may use the following values of physical constants wherever necessary : $c = 3 \times 10^8 \text{ m/s}$

$$h = 6.63 \times 10^{-34} \text{ Js},$$

$$e = 1.6 \times 10^{-19} \text{ C},$$

$$\mu_0 = 4 \pi \times 10^{-7} \text{ H/m}$$

$$\epsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 / \text{Nm}^2$$

$$\text{Mass of electron (me)} = 9.1 \times 10^{-31} \text{ kg}$$

$$\text{Mass of neutron} = 1.675 \times 10^{-27} \text{ kg}$$

$$\text{Mass of proton} = 1.673 \times 10^{-27} \text{ kg}$$

सामान्य निर्देश:

(i) इस प्रश्नपत्र में 33 प्रश्न हैं। सभी प्रश्न अनिवार्य हैं।

(ii) यह प्रश्न पत्र पांच खंडों A, B, C, D और E में विभाजित है।

(iii) भाग 'अ' में प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रश्न हैं। प्रत्येक प्रश्न 1 अंक का है।

(iv) भाग 'ब' में प्रश्न संख्या 17 से 21 अति लघु उत्तरीय प्रश्न हैं। प्रत्येक प्रश्न 2 अंकों का है।

(v) भाग 'ग' में प्रश्न संख्या 22 से 28 तक लघु उत्तरीय प्रश्न हैं। प्रत्येक प्रश्न 3 अंकों का है।

(vi) खंड 'घ' में प्रश्न संख्या 29 और 30 केस स्टडी पर आधारित हैं। प्रत्येक प्रश्न 4 अंकों का है।

(vii) खंड 'ई' में प्रश्न संख्या 31 से 33 दीर्घ उत्तरीय प्रश्न हैं। प्रत्येक प्रश्न 5 अंक का है।

(viii) प्रश्नपत्र में कोई समग्र विकल्प नहीं दिया गया है। हालाँकि, खंड 'अ' को छोड़कर खंडों में कुछ प्रश्नों में आंतरिक विकल्प दिया गया है।

कैलकुलेटर का उपयोग निषिद्ध है। आप आवश्यकतानुसार भौतिक स्थिरांकों के निम्नलिखित मानों का उपयोग कर सकते हैं: $c = 3 \times 108 \text{ m/s}$

$$h = 6.63 \times 10^{-34} \text{ जैएस},$$

$$e = 1.6 \times 10^{-19} \text{ सी},$$

$$\mu_0 = 4\pi \times 10^{-7} \text{ एच/एम}$$

$$\epsilon_0 = 8.854 \times 10^{-12} \text{ सी}^2 / \text{एनएम}^2$$

इलेक्ट्रॉन का द्रव्यमान (me) = 9.1×10^{-31} किग्रा

न्यूट्रॉन का द्रव्यमान = 1.675×10^{-27} किग्रा

प्रोटॉन का द्रव्यमान = 1.673×10^{-27} किग्रा

SECTION A भाग 'अ'

1. A point charge situated at a distance 'r' from a short electric dipole on its axis experience a force F. If the distance of the charge is '2r' the force on the charge will be :

अपने अक्ष पर एक छोटे विद्युत द्विध्रुव से 'r' दूरी पर स्थित एक विंदु आवेश एक बल F का अनुभव करता है। यदि आवेश की दूरी '2r' है तो आवेश पर बल होगा:

(a) $F/16$ (b) $F/8$ (c) $F/4$ (d) $F/2$

2. According to Gauss's law, electric field of an infinitely long straight wire is proportional to-

गॉस के नियम के अनुसार, एक अनंत लंबे सीधे तार का विद्युत क्षेत्र किसके समानुपाती होता है?

(a) r (b) $1/r^2$ (c) $1/r^3$ (d) $1/r$

3. Consider a group of charges $q_1, q_2, q_3 \neq 0$. Then equipotential at a large distance, due to this group are approximately:

आवेशों के एक समूह $q_1, q_2, q_3 \neq 0$ पर विचार करें। तो इस समूह के कारण बड़ी दूरी पर समविभव लगभग हैं:

(a) Plane (समतल) (b) Spherical surface (गोलाकार सतह) (c) Paraboloidal surface (परवलयिक)
(d) Ellipsoidal surface (दीर्घवृत्ताकार सतह)

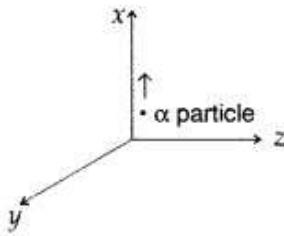

4. Electric potential of earth is taken to be zero, because earth is a good-

पृथ्वी का विद्युत विभव शून्य माना जाता है, क्योंकि पृथ्वी एक अच्छा-

(a) Insulator (कुचालक) (b) conductor (कुचालक) (c) semiconductor (अर्धचालक)
(d) dielectric (परावैद्युत)

5. For a metallic conductor, the correct representation of variation of resistance R with temperature T is :

एक ध्रात्विक चालक के लिए, तापमान T के साथ प्रतिरोध R के परिवर्तन का सही प्रतिनिधित्व है:


6. The potential difference across a cell in an open circuit is 8 V. It falls to 4 V when a current of 4 A is drawn from it. The internal resistance of the cell is :

एक खुले परिपथ में एक सेल के सिरों के बीच विभवांतर 8 V है। जब इससे 4 A धारा प्रवाहित की जाती है, तो यह 4 V रह जाता है। सेल का आंतरिक प्रतिरोध है:

(a) 4 (b) 3 (c) 2 (d) 1

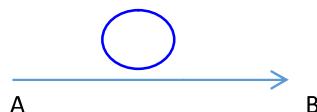
7. A beam of particles projected along $+x$ -axis, experiences a force due to a magnetic field along the $+y$ -axis. What is the direction of the magnetic field?

$+x$ -अक्ष के अनुदिश प्रक्षेपित कणों की एक किरण पुंज, $+y$ -अक्ष के अनुदिश चुंबकीय क्षेत्र के कारण बल का अनुभव करती है। चुंबकीय क्षेत्र की दिशा क्या है?

(a) X axis (b) Y axis (c) Z axis (d) -Z axis

8. A circular loop of radius R , carrying current I , lies in x - y plane with its centre at origin. Total magnetic flux through x - y plane is -

त्रिज्या R का एक वृत्ताकार लूप, जिसमें धारा। प्रवाहित हो रही है, xy तल में स्थित है और इसका केंद्र मूल बिंदु पर है। xy तल से गुजरने वाला कुल चुंबकीय फ्लूक्स है -


(a) directly proportional to I (I के समानुपाती) (b) directly proportional to R (R के समानुपाती)
 (c) inversely proportional to R (R के व्युक्तमानुपाती) (d) 0

9. Curie temperature is the temperature above which -

.क्यूरी तापमान वह तापमान है जिसके ऊपर -

(a) a ferromagnetic material becomes paramagnetic (एक लौहचुम्बकीय पदार्थ अनुचुम्बकीय हो जाता है)
 (b) a paramagnetic material becomes diamagnetic (एक अनुचुंबकीय पदार्थ प्रतिचुंबकीय हो जाता है)
 (c) a ferromagnetic material becomes diamagnetic (लौहचुम्बकीय पदार्थ प्रतिचुम्बकीय हो जाता है)
 (d) a paramagnetic material becomes ferromagnetic (एक अनुचुंबकीय पदार्थ लौहचुंबकीय बन जाता है)

10. An increasing current is flowing from A to B, the direction of induced in the coil will be -

एक बढ़ती हुईधारा A से B की ओर प्रवाहित हो रही है, कुंडली में प्रेरित धारा की दिशा होगी -

(a) Clockwise (दक्षिणावर्त) (b) anticlockwise (वामावर्त)
 (c) 0 (d) none of these (इनमें से कोई नहीं)

11. The power delivered by the source of circuit is maximum when -

सर्किट के स्रोत द्वारा प्रदत्त शक्ति अधिकतम होती है जब -

(a) $\omega L = \omega C$ (b) $\omega L = 1/\omega C$ (c) $\omega L = \omega C^2$ (d) none of these

12. Which of the following will deflect in electric field ?

निम्नलिखित में से कौन विद्युत क्षेत्र में विक्षेपित होगा?

(a) X rays (b) gamma rays (c) cathode rays (d) U-V rays

Questions number 13 to 16 are Assertion (A) and Reason (R) type questions. Two statements are given one labelled Assertion (A) and the other labelled Reason

(R). Select the correct answer from the codes (A), (B), (C) and (D) as given below.

(A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).

(B) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).

(C) Assertion (A) is true, but Reason (R) is false.

(D) Assertion (A) is false and Reason (R) is also false.

प्रश्न संख्या 13 से 16 अभिकथन (A) और कारण (R) प्रकार के प्रश्न हैं।

दिए गए कथनों में से एक को अभिकथन (A) और दूसरे को कारण (R) कहा गया है।

नीचे दिए गए कृत (A), (B), (C) और (D) में से सही उत्तर चुनिए।

(A) अभिकथन (A) और कारण (R) दोनों सत्य हैं और कारण (R) अभिकथन (A) की सही व्याख्या है।

(B) अभिकथन (A) और कारण (R) दोनों सत्य हैं, लेकिन कारण (R) अभिकथन (A) की सही व्याख्या नहीं है।

(C) अभिकथन (A) सत्य है, परन्तु कारण (R) असत्य है।

(D) अभिकथन (A) गलत है और कारण (R) भी गलत है।

13. Assertion (A) : Lenz's law is the consequence of the law of conservation of energy.

Reason (R) : There is no power loss in an ideal inductor.

अभिकथन (A) : लेंज का नियम ऊर्जा संरक्षण के नियम का परिणाम है।

कारण (R) : एक आदर्श प्रेरक में कोई शक्ति हानि नहीं होती है।

14. Assertion: When a bar of copper is placed in an external magnetic field, the field lines get concentrated inside the bar.

Reason (R) : Copper is a paramagnetic substance.

अभिकथन: जब तांबे की एक छड़को वाह्य चुंबकीय क्षेत्र में रखा जाता है, तो क्षेत्र रेखाएं छड़के अंदर केंद्रित हो जाती हैं।

कारण (R) : तांबा एक अनचंबकीय पदार्थ है।

15. Assertion (A) : The internal resistance of a cell is constant.

Reason (R) : Ionic concentration of the electrolyte remains same during use of a cell.

अभिकथन (A) : सेल का आंतरिक प्रतिरोध स्थिर होता है।

कारण (B): सेल के उपयोग के दौरान विद्युत अपघच्छ की आयनिक सांकेति समान रहती है।

16. Assertion: For practical purpose the earth is used as a reference at zero potential in electrical circuits.

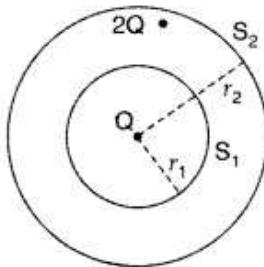
Reason: The electrical potential of a sphere of radius R with charge Q uniformly distributed on the surface is given by $Q/4\pi\epsilon_0$.

अभिकथन: व्यावहारिक उद्देश्य के लिए विद्युत परिपथों में शून्य विभव पर पृथकी का उपयोग संदर्भ के रूप में किया जाता है।

कारण: सतह पर समान रूप से वितरित आवेश Q वाले त्रिज्या R के गोले का विद्युत विभव $Q/4\pi\epsilon_0$.

द्वारा दिया जाता है

SECTION-B भाग 'ब'


17. State Gauss's law in electrostatics. Using this law derive an expression for the electric field due to a uniformly charged infinite plane sheet.

स्थिरवैद्युतिकी में गॉस का नियम बताइए। इस नियम का उपयोग करके एक समान रूप से परिवर्तित अनंत समतल शीट के कारण विद्युत क्षेत्र के लिए एक व्यंजक व्युत्पन्न कीजिए।

OR

A sphere S_1 of radius r_1 encloses a net charge Q . If there is another concentric sphere S_2 of radius r_2 ($r_2 > r_1$) enclosing charge $2Q$, find the ratio of the electric flux through S_1 and S_2 . How will the electric flux through sphere S_1 change if a medium of dielectric constant K is introduced in the space inside S_2 in place of air?

त्रिज्या r_1 वाला एक गोला S_1 एक शुद्ध आवेश Q से घिरा है। यदि त्रिज्या r_2 ($r_2 > r_1$) वाला एक अन्य संकेन्द्रीय गोला S_2 आवेश $2Q$ से घिरा है, तो S_1 और S_2 से गुजरने वाले विद्युत फ्लक्स का अनुपात ज्ञात कीजिए। यदि S_2 के अंदर वायु के स्थान पर परावैद्युतांक K का एक माध्यम प्रविष्ट कराया जाए, तो गोले S_1 से गुजरने वाले विद्युत फ्लक्स में क्या परिवर्तन होगा?

18. A Q charge is placed at point O as shown in figure, the potential difference $V_A - V_B$ positive, negative or zero?

चित्र में दर्शाए अनुसार आवेश Q को बिंदु O पर रखा गया है, विभवांतर $V_A - V_B$ धनात्मक, ऋणात्मक या शून्य है?

(a) Q +ve है। (b) Q -ve है

Q

(a) Q is +ve.

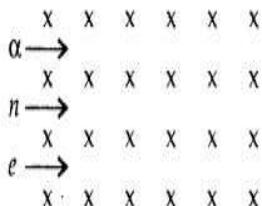
(b) Q is -ve

O.

A.

B

19. Calculate the current drawn from the battery in the given network.


दिए गए नेटवर्क में बैटरी से ली गई धारा की गणना कीजिए।

20.(a) Write the expression for the magnetic force acting on a charged particle moving with velocity v in the presence of magnetic field B .

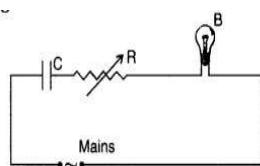
(a) चुम्बकीय क्षेत्र B की उपस्थिति में वेग v से गतिमान आवेशित कण पर लगने वाले चुम्बकीय बल के लिए व्यंजक लिखिए।

(b) A neutron, an electron and an alpha particle moving with equal velocities, enter a uniform magnetic field going into the plane of the paper as shown. Trace their paths in the field and justify

your answer .

(b) एक न्यूट्रोन, एक इलेक्ट्रॉन और एक अल्फा कण समान वेग से गति करते हुए, एक समान चुम्बकीय क्षेत्र में प्रवेश करते हैं और कागज के तल में चित्रानुसार प्रवेश करते हैं। क्षेत्र में उनके पथों का अनुरेखण कीजिए और अपने उत्तर का औचित्य सिद्ध कीजिए।

21. capacitor 'C', a variable resistor 'R' and a bulb 'B' are connected in series to the ac mains in a circuit as shown. The bulb glows with some brightness. How will the glow of the bulb change if-

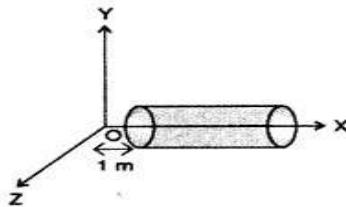

(i) a dielectric slab is introduced between the plates of the capacitor, keeping resistance R to be the same.

(ii) the resistance R is increased keeping the same capacitance?

.संधारित्र 'C', एक परिवर्ती प्रतिरोधक 'R' और एक बल्ब 'B' चित्र में दर्शाए अनुसार AC मेन्स से श्रेणीक्रम में जुड़े हैं। बल्ब कुछ चमक के साथ चमकता है। बल्ब की चमक में क्या परिवर्तन होगा यदि-

(i) संधारित्र की प्लेटों के बीच एक परावैद्युत स्लैब डाला जाता है, प्रतिरोध R को समान रखते हुए।

(ii) धारिता समान रखते हुए प्रतिरोध R बढ़ा दिया जाए?


SECTION-Cभाग 'ग'

22. A hollow cylindrical box of length 1m and area of cross-section 25 cm² is placed in a three dimensional coordinate system as shown in the figure. The electric field in the region is given by $E=50xi$ where E is in NC⁻¹ and x is in meters. Find -

(i) Net flux through the cylinder. (ii) Charge enclosed by the cylinder.

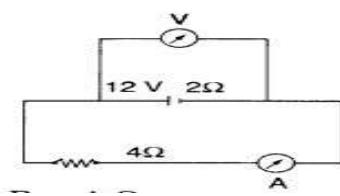
1 मीटर लंबाई और 25 सेमी² अनुप्रस्थ काट क्षेत्रफल वाला एक खोखला बेलनाकार डिब्बा एक त्रिविमीय निर्देशांक प्रणाली में रखा गया है जैसा कि चित्र में दिखाया गया है। इस क्षेत्र में विद्युत क्षेत्र $E=50xi$ द्वारा व्यक्त किया जाता है, जहाँ E , NC⁻¹ में और x , मीटर में है। ज्ञात कीजिए -

(i) सिलेंडर से होकर गुजरने वाला नेट फ्लक्स। (ii) सिलेंडर द्वारा परिवद्ध आवेश।

23. An electric dipole of length 2 cm, when placed with its axis making an angle of 60° with a uniform electric field, experiences a torque of $8\sqrt{3}$ Nm. Calculate the potential energy of the dipole, if it has a charge of ± 4 nC.

2 सेमी लंबाई वाले एक विद्युत द्विध्रुव को जब उसकी अक्ष पर एकसमान विद्युत क्षेत्र के साथ 60° का कोण बनाते हुए रखा जाता है, तो उस पर $8\sqrt{3}$ न्यूटन मीटर का बल आघूर्ण लगता है। यदि द्विध्रुव पर ± 4 nC आवेश है, तो उसकी स्थितिज ऊर्जा की गणना कीजिए।

24. A battery of emf 12V and internal resistance 2Ω is connected to a 4Ω resistor as shown in the figure.


(a) Show that a voltmeter when placed across the cell and across the resistor, in turn, gives the same reading.

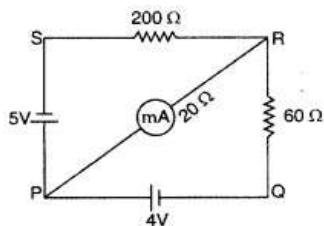
(b) To record the voltage and the current in the circuit, why is voltmeter placed in parallel and ammeter in series in the circuit?

विद्युत वाहक बल 12V तथा आन्तरिक प्रतिरोध 2Ω वाली एक बैटरी को 4Ω प्रतिरोधक से जोड़ा गया है जैसा कि चित्र में दर्शाया गया है।

(a) दर्शाइए कि जब एक वोल्टमीटर को सेल के आर-पार तथा प्रतिरोधक के आर-पार रखा जाता है, तो वह क्रमशः समान पाठ्यांक देता है।

(b) परिपथ में वोल्टता और धारा को रिकार्ड करने के लिए वोल्टमीटर को समान्तर क्रम में तथा अमीटर को श्रेणीक्रम में क्यों रखा जाता है?

25. Obtain the expression for mutual inductance of a pair of long coaxial solenoids each of length l and radii r_1 and r_2 ($r_2 \gg r_1$). Total number of turns in the two solenoids are N_1 and N_2 respectively.


लंबाई l और त्रिज्या r_1 तथा r_2 ($r_2 \gg r_1$) वाले लंबे समाक्षीय परिनालिकाओं के एक युग्म के पारस्परिक प्रेरकत्व के लिए व्यंजक प्राप्त कीजिए। दोनों परिनालिकाओं में फेरों की कुल संख्या क्रमशः N_1 तथा N_2 है।

26. (i) State the two Kirchhoff's laws for electrical circuit.

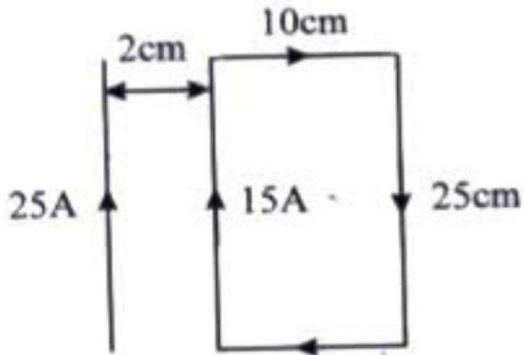
(ii) The network PQRS, shown in the circuit diagram, has the batteries of 4 V and 5 V and negligible internal resistance. A milliammeter of $20\ \Omega$ resistance is connected between P and R. Calculate the reading in the milliammeter.

(i) विद्युत परिपथ के लिए किरचॉफ के दो नियम बताइए।

(ii) परिपथ आरेख में दर्शाए गए नेटवर्क PQRS में 4 V और 5 V की बैटरियाँ हैं और आंतरिक प्रतिरोध नगण्य है। P और R के बीच $20\ \Omega$ प्रतिरोध का एक मिलीमीटर जुड़ा है। मिलीमीटर में पाठ्यांक की गणना कीजिए।

27. (i) State the principle of working of a transformer. Can a transformer be used to step up or step down a d.c. voltage? Justify your Answer.

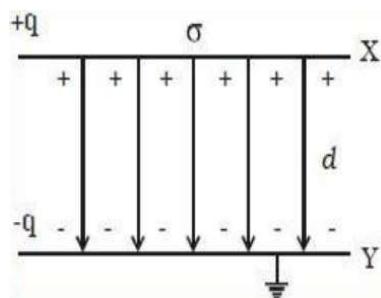
(ii) A transformer has 500 turns in the primary and 1000 turns in its secondary winding. The primary voltage is 200 volts and the load in the secondary is 100 ohm. Calculate the current in the primary, assuming it to be an ideal transformer.


(i) ट्रांसफार्मर के कार्य करने का सिद्धांत बताइए। क्या ट्रांसफार्मर का उपयोग dc वोल्टेज को बढ़ाने या घटाने के लिए किया जा सकता है? अपने उत्तर का औचित्य सिद्ध कीजिए।

(ii) एक ट्रांसफार्मर की प्राथमिक कुंडली में 500 फेरे और द्वितीयक कुंडली में 1000 फेरे हैं। प्राथमिक कुंडली का वोल्टता 200 वोल्ट है और द्वितीयक कुंडली में भार 100 ओम है। इसे एक आदर्श ट्रांसफार्मर मानते हुए, प्राथमिक कुंडली में प्रवाहित धारा की गणना कीजिए।

28. A rectangular loop of sides 25cm and 10cm carrying a current of 15A is placed with its longer side parallel to a long straight conductor 2.0cm apart carrying a current of 25 A. What is the net force on the loop?

25 सेमी और 10 सेमी भुजाओं वाला एक आयताकार लूप, जिसमें 15 एम्प धारा प्रवाहित हो रही है, इसकी लम्बी भुजा को 25 एम्प धारा प्रवाहित करने वाले 2.0 सेमी दूरी पर स्थित एक लम्बे सीधे चालक के समान्तर रखा गया


है। लूप पर नेट बल क्या है?

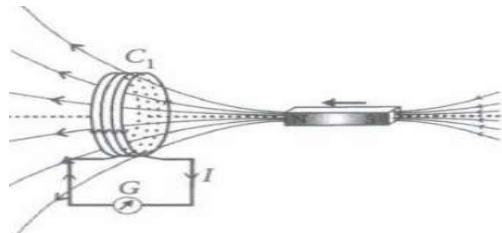
SECTION-D भाग 'घ'

29. The parallel plate capacitor consists of two parallel metal plates X and Y each of area A, separated by a distance d, having a surface charge density σ as shown in figure. The medium between the plates is air. A charge $+q$ is given to the plate X. It induces a charge $-q$ on the upper surface of earthed plate Y. When the plates are very close to each other, the field is confined to the region between them. The electric lines of force starting from plate X and ending at the plate Y are parallel to each other and perpendicular to the plates. The capacitance is directly proportional to the area (A) of the plates and inversely proportional to their distance of separation (d). The capacitance (C) of the parallel plate capacitor is given by $C = \epsilon_0 A/d$. If the region between the two plates is filled with dielectric like mica or oil. Its capacitance increased by ϵ_r times of the medium.

समानांतर प्लेट संधारित्र में दो समानांतर धातु प्लेटें X और Y शामिल हैं, जिनमें से प्रत्येक का क्षेत्रफल A है, जो d दूरी से अलग हैं, और जिनका सतही आवेश धनत्व 0 है जैसा कि चित्र में दिखाया गया है। प्लेटों के बीच का माध्यम वायु है। प्लेट X को $+q$ आवेश दिया जाता है। यह पृथक्षी से जुड़ी प्लेट Y की ऊपरी सतह पर $-q$ आवेश प्रेरित करता है। जब प्लेटें एक दूसरे के बहुत करीब होती हैं, तो क्षेत्र उनके बीच के क्षेत्र तक ही सीमित होता है। प्लेट X से शुरू होकर प्लेट Y पर समाप्त होने वाली विद्युत बल रेखाएं एक दूसरे के समानांतर और प्लेटों के लंबवत होती हैं। धारिता प्लेटों के क्षेत्रफल (A) के समानुपाती और उनके पृथक्करण की दूरी (d) के व्युत्क्रमानुपाती होती है। समानांतर प्लेट संधारित्र की धारिता (C) $C = \epsilon_0 A/d$ द्वारा दी जाती है।

(i) A capacitor is charged by a battery and the charging battery is disconnected and a dielectric slab is inserted in it. Then for the capacitor-

एक संधारित्र को एक बैटरी द्वारा आवेशित किया जाता है और चार्जिंग बैटरी को अलग करके उसमें एक परावैद्युत स्लैब डाल दिया जाता है। तब संधारित्र के लिए-


एक समान्तर प्लेट वायु संधारित्र, जिसकी प्लेटों के बीच कोई परावैद्युत नहीं है, एक स्थिर वोल्टता स्रोत से संयोजित है। यदि प्लेटों के बीच परावैद्युतांक $k = 2$ वाला परावैद्युत डाला जाए, तो धारिता पर क्या प्रभाव पड़ेगा?

- (a) Capacitance decreases (धारिता घट जाती है)
- (b) Capacitance increases by two times (धारिता दो गुना बढ़ जाती है)
- (c) Capacitance remains unchanged (धारिता अपरिवर्तित रहती है)
- (d) insufficient data (डेटा अपर्याप्त है)

30. In year 1820 Oersted discovered the magnetic effect of current. Faraday gave the thought that reverse of this phenomenon is also possible i.e., current can also be produced by magnetic field. Faraday showed that when we move a magnet towards the coil which is connected by a sensitive galvanometer. The galvanometer gives instantaneous deflection showing that there is an electric current in the loop. Whenever relative motion between coil and magnet takes place an emf induced in coil. If coil is in closed circuit then current is also induced in the circuit. This phenomenon is called electromagnetic induction.

वर्ष 1820 में ओर्स्टेड ने धारा के चुंबकीय प्रभाव की खोज की। फैराडे ने यह विचार दिया कि इस परिघटना का विपरीत भी संभव है, अर्थात् चुंबकीय क्षेत्र द्वारा धारा भी उत्पन्न की जा सकती है। फैराडे ने दर्शाया कि जब हम एक चुंबक को एक कुंडली की ओर ले जाते हैं जो एक संवेदनशील गैल्वेनोमीटर से जुड़ी होती है, तो गैल्वेनोमीटर तात्कालिक विक्षेपण उत्पन्न करता है, जो दर्शाता है कि लूप में विद्युत धारा प्रवाहित है। जब भी कुंडली और चुंबक के

बीच सापेक्ष गति होती है, तो कुंडली में एक विद्युत वाहक बल प्रेरित होता है। यदि कुंडली बंद परिपथ में है, तो परिपथ में भी धारा प्रेरित होती है। इस परिघटना को विद्युत चुम्बकीय प्रेरण कहते हैं।

(i) The north pole of a long bar magnet was pushed slowly into a short solenoid connected to a galvanometer. The magnet was held stationary for a few seconds with the north pole in the middle of the solenoid and then withdrawn rapidly. The maximum deflection of the galvanometer was observed when the magnet was -

एक लंबे छड़ चुंबक के उत्तरी ध्रुव को धीरे-धीरे एक छोटी परिनालिका में धकेला गया, एक गैल्वेनोमीटर से जुड़ा हुआ। चुम्बक को कुछ सेकंड के लिए स्थिर रखा गया। उत्तरी ध्रुव को सोलेनोइड के मध्य में रखकर तेजी से वापस ले लिया जाता है। गैल्वेनोमीटर का अधिकतम विक्षेपण तब देखा गया जब चुंबक-

- (a) moving towards the solenoid (सोलेनोइड की ओर बढ़ना)
- (b) moving into the solenoid (सोलेनोइड के अन्दर जाना)
- (c) at rest inside the solenoid (सोलेनोइड के अंदर स्थिर अवस्था में)
- (d) moving out of the solenoid. (सोलेनोइड से बाहर गतिमान।)

(ii) A closed iron ring is held horizontally and a bar magnet is dropped through the ring with its length along the axis of the ring. The acceleration of the falling magnet is -

एक बंद लोहे की अंगूठी को क्षैतिज रूप से रखा जाता है और एक बार चुंबक को इसके माध्यम से गिराया जाता है। वलय की अक्ष के अनुदिश इसकी लंबाई के साथ। गिरते हुए चुंबक का त्वरण है-

- (a) equal to g (g के बराबर)
- (b) less than g (g से कम)
- (c) more than g (g से अधिक)
- (d) depends on the diameter of the ring and length of magnet(वलय के व्यास और चुंबक की लंबाई पर निर्भर करता है)

(iii) Whenever there is a relative motion between a coil and a magnet, the magnitude of induced emf set up in the coil does not depend upon the -

जब भी किसी कुंडली और चुंबक के बीच सापेक्ष गति होती है, तो कुंडली में स्थापित प्रेरित ईएमएफ का परिमाण इस पर निर्भर नहीं करता है -

- (a) relative speed between the coil and magnet (कुंडली और चुंबक के बीच सापेक्ष गति)

(b) magnetic moment of the coil (कुंडली का चुंबकीय आघूर्ण)

(c) resistance of the coil (कुंडली का प्रतिरोध)

(d) number of turns in the coil (कुंडली में फेरों की संख्या)

(iv) A coil of metal wire is kept stationary in a non-uniform magnetic field -
धातु के तार की एक कुंडली को असमान चुंबकीय क्षेत्र में स्थिर रखा जाता है

(a) an emf and current both are induced in the coil (कुंडली में emf और धारा दोनों प्रेरित होते हैं)

(b) an emf is not induced but current is induced in the coil (ईएमएफ प्रेरित नहीं होता है लेकिन कुंडली में धारा प्रेरित होती है)

(c) an emf is induced but current is not induced in the coil (ईएमएफ प्रेरित होता है लेकिन कुंडली में धारा प्रेरित नहीं होती है)

(d) neither emf nor current is induced in the coil (कुंडली में न तो emf और न ही धारा प्रेरित होती है)

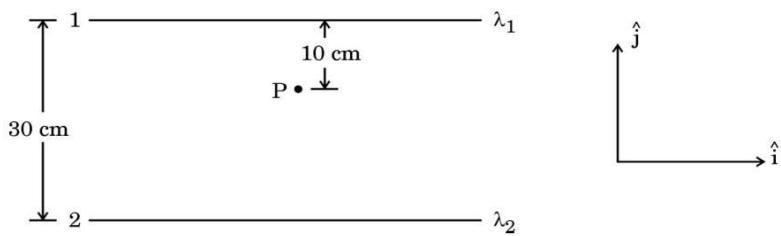
SECTION -E भाग 'ई'

31.(i) Obtain an expression for the electric potential due to a small dipole of dipole moment p , at an axial point r from its centre, for much larger distances compared to the size of the dipole.

(ii) Three point charges q , $2q$ and nq are placed at the vertices of an equilateral triangle. If the potential energy of the system is zero, find the value of n .

(i) द्विध्रुव आघूर्ण p वाले एक छोटे द्विध्रुव के कारण, उसके केन्द्र से अक्षीय बिन्दु r पर, द्विध्रुव के आकार की तुलना में बहुत अधिक दूरियों के लिए विद्युत विभव के लिए व्यंजक प्राप्त कीजिए।

(ii) तीन बिंदु आवेश q , $2q$ और nq एक समबाहु त्रिभुज के शीर्षों पर स्थित हैं। यदि निकाय की स्थितिज ऊर्जा शून्य है, तो n का मान ज्ञात कीजिए।


OR

(i) Derive an expression for torque on an electric dipole placed in uniform electric field.

(ii) Two long straight wires 1 and 2 are kept as shown in the figure. The linear charge density of the two wires are $1 = 10 \text{ C/m}$ and $2 = 20 \text{ C/m}$. Find the net force F experienced by an electron held at point P .

(i) एकसमान विद्युत क्षेत्र में रखे विद्युत द्विध्रुव पर बल आघूर्ण के लिए व्यंजक व्युत्पन्न कीजिए।

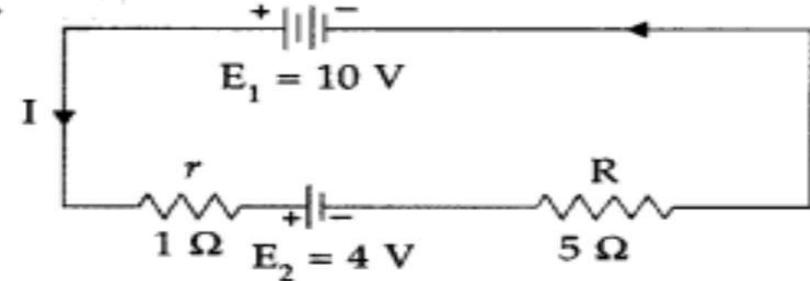
(ii) दो लंबे सीधे तार 1 और 2 चित्र में दर्शाएं अनुसार रखे गए हैं। दोनों तारों का रैखिक आवेश घनत्व $1 = 10 \text{ C/m}$ और $2 = 20 \text{ C/m}$ है। बिंदु P पर रखे एक इलेक्ट्रॉन द्वारा अनुभव किया जाने वाला शुद्ध बल F ज्ञात कीजिए।

32.(i) What is meant by current sensitivity of a galvanometer ? Mention the factors on which it depends.

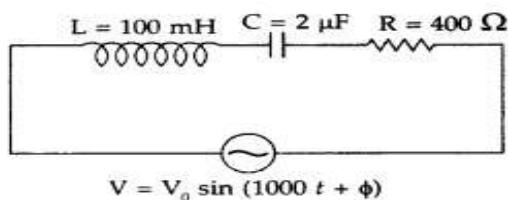
(ii) A galvanometer of resistance G is converted into a voltmeter of range (0- V) by using a resistance R . Find the resistance, in terms of R and G , required to convert it into a voltmeter of range (0- $V/2$).

(i) गैल्वेनोमीटर की धारा संवेदनशीलता से क्या तात्पर्य है ? उन कारकों का उल्लेख कीजिए जिन पर यह निर्भर करती है।

(ii) प्रतिरोध G वाले एक गैल्वेनोमीटर को प्रतिरोध R का उपयोग करके (0- V) परास वाले वोल्टमीटर में परिवर्तित किया जाता है। इसे (0- $V/2$) परास वाले वोल्टमीटर में परिवर्तित करने के लिए आवश्यक प्रतिरोध, R और G के पदों में, ज्ञात कीजिए।


OR

(i) Derive the relation between electric current and drift velocity.


(ii) A cell of emf 4 V and internal resistance 1 Ω is connected to a d.c. source of 10 V through a resistor of 5 Ω . Calculate the terminal voltage across the cell during charging.

विद्युत धारा और अपवाह वेग के बीच संबंध स्थापित करें।

4 V विद्युत वाहक बल और 1 Ω आन्तरिक प्रतिरोध वाला एक सेल 5 Ω प्रतिरोधक द्वारा 10 V के दिष्ट धारा स्रोत से जुड़ा है। चार्जिंग के दौरान सेल के सिरों पर लगने वाले टर्मिनल वोल्टेज की गणना कीजिए।

33.(i) Find the value of the phase difference between the current and the voltage in the series LCR circuit shown here. Which one leads in phase: current or voltage?

(ii) Without making any other change, find the value of the additional capacitor C_v to be connected in parallel with the capacitor C , in order to make the power factor of the circuit unity.

(i) यहाँ दर्शाए गए श्रेणीक्रम LCR परिपथ में धारा और वोल्टता के बीच कलान्तर का मान ज्ञात कीजिए। कौन-सा परिपथ अग्र कला में है: धारा या वोल्टता?

(ii) कोई अन्य परिवर्तन किए बिना, परिपथ के शक्ति गुणांक को एक बनाने के लिए, संधारित्र C के साथ समान्तर में जोड़े जाने वाले अतिरिक्त संधारित्र C_v का मान ज्ञात कीजिए।

OR

(i) State Faraday's laws.

(ii) The magnetic flux through a coil perpendicular to the plane is varying according to the relation-

$$\phi = (5t^3 + 4t^2 + 2t - 5) \text{ Wb}$$

Calculate the induced current through the coil at $t=2s$, if the resistance of the coil is 5 ohm.

(i) फैराडे के नियम बताइये।

(ii) समतल के लंबवत कुंडली से गुजरने वाला चुंबकीय फ्लक्स निम्न संबंध के अनुसार परिवर्तित हो रहा है-

$$\phi = (5t^3 + 4t^2 + 2t - 5) \text{ Wb}$$

यदि कुंडली का प्रतिरोध 5 ओम है, तो $t=2s$ पर कुंडली से प्रवाहित प्रेरित धारा की गणना कीजिए।
